1
0
mirror of https://passt.top/passt synced 2025-01-05 04:15:25 +00:00
Commit Graph

15 Commits

Author SHA1 Message Date
David Gibson
3af5e9fdba icmp: Store ping socket information in flow table
Currently icmp_id_map[][] stores information about ping sockets in a
bespoke structure.  Move the same information into new types of flow
in the flow table.  To match that change, replace the existing ICMP
timer with a flow-based timer for expiring ping sockets.  This has the
advantage that we only need to scan the active flows, not all possible
ids.

We convert icmp_id_map[][] to point to the flow table entries, rather
than containing its own information.  We do still use that array for
locating the right ping flows, rather than using a "flow native" form
of lookup for the time being.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: Update id_sock description in comment to icmp_ping_new()]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-03-12 01:34:45 +01:00
David Gibson
0f938c3b9a flow: Clarify flow entry life cycle, introduce uniform logging
Our allocation scheme for flow entries means there are some
non-obvious constraints on when what things can be done with an entry.
Add a big doc comment explaining the life cycle.

In addition, make a FLOW_START() macro to mark one of the important
transitions.  This encourages correct usage, by making it natural to
only access the flow type specific structure after calling it.  It
also logs that a new flow has been created, which is useful for
debugging.

We also add logging when a flow's lifecycle ends.  This doesn't need a
new helper, because it can only happen either from flow_alloc_cancel()
or from the flow deferred handler.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-02-29 09:48:01 +01:00
David Gibson
76c7e1dca3 flow: Add helper to determine a flow's protocol
Each flow already has a type field.  This implies the protocol the
flow represents, but also has more information: we have two ways to
represent TCP flows, "tap" and "spliced".  In order to generalise some
of the flow mechanics, we'll need to determine a flow's protocol in
terms of the IP (L4) protocol number.

Introduce a constant table and helper macro to derive this from the flow
type.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-02-29 09:47:45 +01:00
David Gibson
8981a720aa flow: Avoid moving flow entries to compact table
Currently we always keep the flow table maximally compact: that is all the
active entries are contiguous at the start of the table.  Doing this
sometimes requires moving an entry when one is freed.  That's kind of
fiddly, and potentially expensive: it requires updating the hash table for
the new location, and depending on flow type, it may require EPOLL_CTL_MOD,
system calls to update epoll tags with the new location too.

Implement a new way of managing the flow table that doesn't ever move
entries.  It attempts to maintain some compactness by always using the
first free slot for a new connection, and mitigates the effect of non
compactness by cheaply skipping over contiguous blocks of free entries.
See the "theory of operation" comment in flow.c for details.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>b
[sbrivio: additional ASSERT(flow_first_free <= FLOW_MAX - 2) to avoid
 Coverity Scan false positive]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-01-22 23:35:37 +01:00
David Gibson
9c0881d4f6 flow: Enforce that freeing of closed flows must happen in deferred handlers
Currently, flows are only evern finally freed (and the table compacted)
from the deferred handlers.  Some future ways we want to optimise managing
the flow table will rely on this, so enforce it: rather than having the
TCP code directly call flow_table_compact(), add a boolean return value to
the per-flow deferred handlers.  If true, this indicates that the flow
code itself should free the flow.

This forces all freeing of flows to occur during the flow code's scan of
the table in flow_defer_handler() which opens possibilities for future
optimisations.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-01-22 23:35:33 +01:00
David Gibson
fb7c00169d flow: Move flow_count from context structure to a global
In general, the passt code is a bit haphazard about what's a true global
variable and what's in the quasi-global 'context structure'.  The
flow_count field is one such example: it's in the context structure,
although it's really part of the same data structure as flowtab[], which
is a genuine global.

Move flow_count to be a regular global to match.  For now it needs to be
public, rather than static, but we expect to be able to change that in
future.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-01-22 23:35:29 +01:00
David Gibson
36dfa8b8fb flow, tcp: Add handling for per-flow timers
tcp_timer() scans the flow table so that it can run tcp_splice_timer() on
each spliced connection.  More generally, other flow types might want to
run similar timers in future.

We could add a flow_timer() analagous to tcp_timer(), udp_timer() etc.
However, this would need to scan the flow table, which we would have just
done in flow_defer_handler().  We'd prefer to just scan the flow table
once, dispatching both per-flow deferred events and per-flow timed events
if necessary.

So, extend flow_defer_handler() to do this.  For now we use the same timer
interval for all flow types (1s).  We can make that more flexible in future
if we need to.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-01-22 23:35:19 +01:00
David Gibson
b43e4483ed flow, tcp: Add flow-centric dispatch for deferred flow handling
tcp_defer_handler(), amongst other things, scans the flow table and does
some processing for each TCP connection.  When we add other protocols to
the flow table, they're likely to want some similar scanning.  It makes
more sense for cache friendliness to perform a single scan of the flow
table and dispatch to the protocol specific handlers, rather than having
each protocol separately scan the table.

To that end, add a new flow_defer_handler() handling all flow-linked
deferred operations.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-01-22 23:35:17 +01:00
David Gibson
64e5459ba6 tcp: Implement hash table with indices rather than pointers
We implement our hash table with pointers to the entry for each bucket (or
NULL).  However, the entries are always allocated within the flow table,
meaning that a flow index will suffice, halving the size of the hash table.

For TCP, just a flow index would be enough, but future uses will want to
expand the hash table to cover indexing either side of a flow, so use a
flow_sidx_t as the type for each hash bucket.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-27 19:29:45 +01:00
David Gibson
705549f834 flow,tcp: Use epoll_ref type including flow and side
Currently TCP uses the 'flow' epoll_ref field for both connected
sockets and timers, which consists of just the index of the relevant
flow (connection).

This is just fine for timers, for while it obviously works, it's
subtly incomplete for sockets on spliced connections.  In that case we
want to know which side of the connection the event is occurring on as
well as which connection.  At present, we deduce that information by
looking at the actual fd, and comparing it to the fds of the sockets
on each side.

When we use the flow table for more things, we expect more cases where
something will need to know a specific side of a specific flow for an
event, but nothing more.

Therefore add a new 'flowside' epoll_ref field, with exactly that
information.  We use it for TCP connected sockets.  This allows us to
directly know the side for spliced connections.  For "tap"
connections, it's pretty meaningless, since the side is always the
socket side.  It still makes logical sense though, and it may become
important for future flow table work.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:51:24 +01:00
David Gibson
df96a4cb5d flow: Introduce 'sidx' type to represent one side of one flow
In a number of places, we use indices into the flow table to identify a
specific flow.  We also have cases where we need to identify a particular
side of a particular flow, and we expect those to become more common as
we generalise the flow table to cover more things.

To assist with that, introduces flow_sidx_t, an index type which identifies
a specific side of a specific flow in the table.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
[sbrivio: Suppress false cppcheck positive in flow_sidx()]
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:51:14 +01:00
David Gibson
eb8b1a233b flow, tcp: Add logging helpers for connection related messages
Most of the messages logged by the TCP code (be they errors, debug or
trace messages) are related to a specific connection / flow.  We're fairly
consistent about prefixing these with the type of connection and the
connection / flow index.  However there are a few places where we put the
index later in the message or omit it entirely.  The template with the
prefix is also a little bulky to carry around for every message,
particularly for spliced connections.

To help keep this consistent, introduce some helpers to log messages
linked to a specific flow.  It takes the flow as a parameter and adds a
uniform prefix to each message.  This makes things slightly neater now, but
more importantly will help keep formatting consistent as we add more things
to the flow table.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:51:12 +01:00
David Gibson
96590b0560 flow: Make unified version of flow table compaction
tcp_table_compact() will move entries in the connection/flow table to keep
it compact when other entries are removed.  The moved entries need not have
the same type as the flow removed, so it needs to be able to handle moving
any type of flow.  Therefore, move it to flow.c rather than being
purportedly TCP specific.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:51:09 +01:00
David Gibson
f08ce92a13 flow, tcp: Move TCP connection table to unified flow table
We want to generalise "connection" tracking to things other than true TCP
connections.  Continue implenenting this by renaming the TCP connection
table to the "flow table" and moving it to flow.c.  The definitions are
split between flow.h and flow_table.h - we need this separation to avoid
circular dependencies: the definitions in flow.h will be needed by many
headers using the flow mechanism, but flow_table.h needs all those protocol
specific headers in order to define the full flow table entry.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:51:02 +01:00
David Gibson
16ae032608 flow, tcp: Generalise connection types
Currently TCP connections use a 1-bit selector, 'spliced', to determine the
rest of the contents of the structure.  We want to generalise the TCP
connection table to other types of flows in other protocols.  Make a start
on this by replacing the tcp_conn_common structure with a new flow_common
structure with an enum rather than a simple boolean indicating the type of
flow.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-12-04 09:50:59 +01:00