1
0
mirror of https://passt.top/passt synced 2025-01-12 07:32:58 +00:00
passt/flow.c
David Gibson e6feb5a892 treewide: Use "our address" instead of "forwarding address"
The term "forwarding address" to indicate the local-to-passt address was
well-intentioned, but ends up being kinda confusing.  As discussed on a
recent call, let's try "our" instead.

(While we're there correct an error in flow_initiate_af()s comments where
we referred to parameters by the wrong name).

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-08-21 11:59:29 +02:00

881 lines
24 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright Red Hat
* Author: David Gibson <david@gibson.dropbear.id.au>
*
* Tracking for logical "flows" of packets.
*/
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <sched.h>
#include <string.h>
#include "util.h"
#include "ip.h"
#include "passt.h"
#include "siphash.h"
#include "inany.h"
#include "flow.h"
#include "flow_table.h"
const char *flow_state_str[] = {
[FLOW_STATE_FREE] = "FREE",
[FLOW_STATE_NEW] = "NEW",
[FLOW_STATE_INI] = "INI",
[FLOW_STATE_TGT] = "TGT",
[FLOW_STATE_TYPED] = "TYPED",
[FLOW_STATE_ACTIVE] = "ACTIVE",
};
static_assert(ARRAY_SIZE(flow_state_str) == FLOW_NUM_STATES,
"flow_state_str[] doesn't match enum flow_state");
const char *flow_type_str[] = {
[FLOW_TYPE_NONE] = "<none>",
[FLOW_TCP] = "TCP connection",
[FLOW_TCP_SPLICE] = "TCP connection (spliced)",
[FLOW_PING4] = "ICMP ping sequence",
[FLOW_PING6] = "ICMPv6 ping sequence",
[FLOW_UDP] = "UDP flow",
};
static_assert(ARRAY_SIZE(flow_type_str) == FLOW_NUM_TYPES,
"flow_type_str[] doesn't match enum flow_type");
const uint8_t flow_proto[] = {
[FLOW_TCP] = IPPROTO_TCP,
[FLOW_TCP_SPLICE] = IPPROTO_TCP,
[FLOW_PING4] = IPPROTO_ICMP,
[FLOW_PING6] = IPPROTO_ICMPV6,
[FLOW_UDP] = IPPROTO_UDP,
};
static_assert(ARRAY_SIZE(flow_proto) == FLOW_NUM_TYPES,
"flow_proto[] doesn't match enum flow_type");
/* Global Flow Table */
/**
* DOC: Theory of Operation - allocating and freeing flow entries
*
* Flows are entries in flowtab[]. We need to routinely scan the whole table to
* perform deferred bookkeeping tasks on active entries, and sparse empty slots
* waste time and worsen data locality. But, keeping the table fully compact by
* moving entries on deletion is fiddly: it requires updating hash tables, and
* the epoll references to flows. Instead, we implement the compromise described
* below.
*
* Free clusters
* A "free cluster" is a contiguous set of unused (FLOW_TYPE_NONE) entries in
* flowtab[]. The first entry in each cluster contains metadata ('free'
* field in union flow), specifically the number of entries in the cluster
* (free.n), and the index of the next free cluster (free.next). The entries
* in the cluster other than the first should have n == next == 0.
*
* Free cluster list
* flow_first_free gives the index of the first (lowest index) free cluster.
* Each free cluster has the index of the next free cluster, or MAX_FLOW if
* it is the last free cluster. Together these form a linked list of free
* clusters, in strictly increasing order of index.
*
* Allocating
* We always allocate a new flow into the lowest available index, i.e. the
* first entry of the first free cluster, that is, at index flow_first_free.
* We update flow_first_free and the free cluster to maintain the invariants
* above (so the free cluster list is still in strictly increasing order).
*
* Freeing
* It's not possible to maintain the invariants above if we allow freeing of
* any entry at any time. So we only allow freeing in two cases.
*
* 1) flow_alloc_cancel() will free the most recent allocation. We can
* maintain the invariants because we know that allocation was made in the
* lowest available slot, and so will become the lowest index free slot again
* after cancellation.
*
* 2) Flows can be freed by returning true from the flow type specific
* deferred or timer function. These are called from flow_defer_handler()
* which is already scanning the whole table in index order. We can use that
* to rebuild the free cluster list correctly, either merging them into
* existing free clusters or creating new free clusters in the list for them.
*
* Scanning the table
* Theoretically, scanning the table requires FLOW_MAX iterations. However,
* when we encounter the start of a free cluster, we can immediately skip
* past it, meaning that in practice we only need (number of active
* connections) + (number of free clusters) iterations.
*/
unsigned flow_first_free;
union flow flowtab[FLOW_MAX];
static const union flow *flow_new_entry; /* = NULL */
/* Hash table to index it */
#define FLOW_HASH_LOAD 70 /* % */
#define FLOW_HASH_SIZE ((2 * FLOW_MAX * 100 / FLOW_HASH_LOAD))
/* Table for lookup from flowside information */
static flow_sidx_t flow_hashtab[FLOW_HASH_SIZE];
static_assert(ARRAY_SIZE(flow_hashtab) >= 2 * FLOW_MAX,
"Safe linear probing requires hash table with more entries than the number of sides in the flow table");
/* Last time the flow timers ran */
static struct timespec flow_timer_run;
/** flowside_from_af() - Initialise flowside from addresses
* @side: flowside to initialise
* @af: Address family (AF_INET or AF_INET6)
* @eaddr: Endpoint address (pointer to in_addr or in6_addr)
* @eport: Endpoint port
* @oaddr: Our address (pointer to in_addr or in6_addr)
* @oport: Our port
*/
static void flowside_from_af(struct flowside *side, sa_family_t af,
const void *eaddr, in_port_t eport,
const void *oaddr, in_port_t oport)
{
if (oaddr)
inany_from_af(&side->oaddr, af, oaddr);
else
side->oaddr = inany_any6;
side->oport = oport;
if (eaddr)
inany_from_af(&side->eaddr, af, eaddr);
else
side->eaddr = inany_any6;
side->eport = eport;
}
/**
* struct flowside_sock_args - Parameters for flowside_sock_splice()
* @c: Execution context
* @fd: Filled in with new socket fd
* @err: Filled in with errno if something failed
* @type: Socket epoll type
* @sa: Socket address
* @sl: Length of @sa
* @data: epoll reference data
*/
struct flowside_sock_args {
const struct ctx *c;
int fd;
int err;
enum epoll_type type;
const struct sockaddr *sa;
socklen_t sl;
const char *path;
uint32_t data;
};
/** flowside_sock_splice() - Create and bind socket for PIF_SPLICE based on flowside
* @arg: Argument as a struct flowside_sock_args
*
* Return: 0
*/
static int flowside_sock_splice(void *arg)
{
struct flowside_sock_args *a = arg;
ns_enter(a->c);
a->fd = sock_l4_sa(a->c, a->type, a->sa, a->sl, NULL,
a->sa->sa_family == AF_INET6, a->data);
a->err = errno;
return 0;
}
/** flowside_sock_l4() - Create and bind socket based on flowside
* @c: Execution context
* @type: Socket epoll type
* @pif: Interface for this socket
* @tgt: Target flowside
* @data: epoll reference portion for protocol handlers
*
* Return: socket fd of protocol @proto bound to our address and port from @tgt
* (if specified).
*/
int flowside_sock_l4(const struct ctx *c, enum epoll_type type, uint8_t pif,
const struct flowside *tgt, uint32_t data)
{
const char *ifname = NULL;
union sockaddr_inany sa;
socklen_t sl;
ASSERT(pif_is_socket(pif));
pif_sockaddr(c, &sa, &sl, pif, &tgt->oaddr, tgt->oport);
switch (pif) {
case PIF_HOST:
if (inany_is_loopback(&tgt->oaddr))
ifname = NULL;
else if (sa.sa_family == AF_INET)
ifname = c->ip4.ifname_out;
else if (sa.sa_family == AF_INET6)
ifname = c->ip6.ifname_out;
return sock_l4_sa(c, type, &sa, sl, ifname,
sa.sa_family == AF_INET6, data);
case PIF_SPLICE: {
struct flowside_sock_args args = {
.c = c, .type = type,
.sa = &sa.sa, .sl = sl, .data = data,
};
NS_CALL(flowside_sock_splice, &args);
errno = args.err;
return args.fd;
}
default:
/* If we add new socket pifs, they'll need to be implemented
* here
*/
ASSERT(0);
}
}
/** flowside_connect() - Connect a socket based on flowside
* @c: Execution context
* @s: Socket to connect
* @pif: Target pif
* @tgt: Target flowside
*
* Connect @s to the endpoint address and port from @tgt.
*
* Return: 0 on success, negative on error
*/
int flowside_connect(const struct ctx *c, int s,
uint8_t pif, const struct flowside *tgt)
{
union sockaddr_inany sa;
socklen_t sl;
pif_sockaddr(c, &sa, &sl, pif, &tgt->eaddr, tgt->eport);
return connect(s, &sa.sa, sl);
}
/** flow_log_ - Log flow-related message
* @f: flow the message is related to
* @pri: Log priority
* @fmt: Format string
* @...: printf-arguments
*/
void flow_log_(const struct flow_common *f, int pri, const char *fmt, ...)
{
const char *type_or_state;
char msg[BUFSIZ];
va_list args;
va_start(args, fmt);
(void)vsnprintf(msg, sizeof(msg), fmt, args);
va_end(args);
/* Show type if it's set, otherwise the state */
if (f->state < FLOW_STATE_TYPED)
type_or_state = FLOW_STATE(f);
else
type_or_state = FLOW_TYPE(f);
logmsg(true, false, pri,
"Flow %u (%s): %s", flow_idx(f), type_or_state, msg);
}
/**
* flow_set_state() - Change flow's state
* @f: Flow changing state
* @state: New state
*/
static void flow_set_state(struct flow_common *f, enum flow_state state)
{
char estr0[INANY_ADDRSTRLEN], fstr0[INANY_ADDRSTRLEN];
char estr1[INANY_ADDRSTRLEN], fstr1[INANY_ADDRSTRLEN];
const struct flowside *ini = &f->side[INISIDE];
const struct flowside *tgt = &f->side[TGTSIDE];
uint8_t oldstate = f->state;
ASSERT(state < FLOW_NUM_STATES);
ASSERT(oldstate < FLOW_NUM_STATES);
f->state = state;
flow_log_(f, LOG_DEBUG, "%s -> %s", flow_state_str[oldstate],
FLOW_STATE(f));
if (MAX(state, oldstate) >= FLOW_STATE_TGT)
flow_log_(f, LOG_DEBUG,
"%s [%s]:%hu -> [%s]:%hu => %s [%s]:%hu -> [%s]:%hu",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr0, sizeof(estr0)),
ini->eport,
inany_ntop(&ini->oaddr, fstr0, sizeof(fstr0)),
ini->oport,
pif_name(f->pif[TGTSIDE]),
inany_ntop(&tgt->oaddr, fstr1, sizeof(fstr1)),
tgt->oport,
inany_ntop(&tgt->eaddr, estr1, sizeof(estr1)),
tgt->eport);
else if (MAX(state, oldstate) >= FLOW_STATE_INI)
flow_log_(f, LOG_DEBUG, "%s [%s]:%hu -> [%s]:%hu => ?",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr0, sizeof(estr0)),
ini->eport,
inany_ntop(&ini->oaddr, fstr0, sizeof(fstr0)),
ini->oport);
}
/**
* flow_initiate_() - Move flow to INI, setting pif[INISIDE]
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
static void flow_initiate_(union flow *flow, uint8_t pif)
{
struct flow_common *f = &flow->f;
ASSERT(pif != PIF_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_NEW);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] == PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
f->pif[INISIDE] = pif;
flow_set_state(f, FLOW_STATE_INI);
}
/**
* flow_initiate_af() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @af: Address family of @saddr and @daddr
* @saddr: Source address (pointer to in_addr or in6_addr)
* @sport: Endpoint port
* @daddr: Destination address (pointer to in_addr or in6_addr)
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_af(union flow *flow, uint8_t pif,
sa_family_t af,
const void *saddr, in_port_t sport,
const void *daddr, in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
flowside_from_af(ini, af, saddr, sport, daddr, dport);
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_initiate_sa() - Move flow to INI, setting INISIDE details
* @flow: Flow to change state
* @pif: pif of the initiating side
* @ssa: Source socket address
* @dport: Destination port
*
* Return: pointer to the initiating flowside information
*/
const struct flowside *flow_initiate_sa(union flow *flow, uint8_t pif,
const union sockaddr_inany *ssa,
in_port_t dport)
{
struct flowside *ini = &flow->f.side[INISIDE];
inany_from_sockaddr(&ini->eaddr, &ini->eport, ssa);
if (inany_v4(&ini->eaddr))
ini->oaddr = inany_any4;
else
ini->oaddr = inany_any6;
ini->oport = dport;
flow_initiate_(flow, pif);
return ini;
}
/**
* flow_target() - Determine where flow should forward to, and move to TGT
* @c: Execution context
* @flow: Flow to forward
* @proto: Protocol
*
* Return: pointer to the target flowside information
*/
const struct flowside *flow_target(const struct ctx *c, union flow *flow,
uint8_t proto)
{
char estr[INANY_ADDRSTRLEN], fstr[INANY_ADDRSTRLEN];
struct flow_common *f = &flow->f;
const struct flowside *ini = &f->side[INISIDE];
struct flowside *tgt = &f->side[TGTSIDE];
uint8_t tgtpif = PIF_NONE;
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_INI);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] == PIF_NONE);
ASSERT(flow->f.state == FLOW_STATE_INI);
switch (f->pif[INISIDE]) {
case PIF_TAP:
tgtpif = fwd_nat_from_tap(c, proto, ini, tgt);
break;
case PIF_SPLICE:
tgtpif = fwd_nat_from_splice(c, proto, ini, tgt);
break;
case PIF_HOST:
tgtpif = fwd_nat_from_host(c, proto, ini, tgt);
break;
default:
flow_err(flow, "No rules to forward %s [%s]:%hu -> [%s]:%hu",
pif_name(f->pif[INISIDE]),
inany_ntop(&ini->eaddr, estr, sizeof(estr)),
ini->eport,
inany_ntop(&ini->oaddr, fstr, sizeof(fstr)),
ini->oport);
}
if (tgtpif == PIF_NONE)
return NULL;
f->pif[TGTSIDE] = tgtpif;
flow_set_state(f, FLOW_STATE_TGT);
return tgt;
}
/**
* flow_set_type() - Set type and move to TYPED
* @flow: Flow to change state
* @pif: pif of the initiating side
*/
union flow *flow_set_type(union flow *flow, enum flow_type type)
{
struct flow_common *f = &flow->f;
ASSERT(type != FLOW_TYPE_NONE);
ASSERT(flow_new_entry == flow && f->state == FLOW_STATE_TGT);
ASSERT(f->type == FLOW_TYPE_NONE);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
f->type = type;
flow_set_state(f, FLOW_STATE_TYPED);
return flow;
}
/**
* flow_activate() - Move flow to ACTIVE
* @f: Flow to change state
*/
void flow_activate(struct flow_common *f)
{
ASSERT(&flow_new_entry->f == f && f->state == FLOW_STATE_TYPED);
ASSERT(f->pif[INISIDE] != PIF_NONE && f->pif[TGTSIDE] != PIF_NONE);
flow_set_state(f, FLOW_STATE_ACTIVE);
flow_new_entry = NULL;
}
/**
* flow_alloc() - Allocate a new flow
*
* Return: pointer to an unused flow entry, or NULL if the table is full
*/
union flow *flow_alloc(void)
{
union flow *flow = &flowtab[flow_first_free];
ASSERT(!flow_new_entry);
if (flow_first_free >= FLOW_MAX)
return NULL;
ASSERT(flow->f.state == FLOW_STATE_FREE);
ASSERT(flow->f.type == FLOW_TYPE_NONE);
ASSERT(flow->free.n >= 1);
ASSERT(flow_first_free + flow->free.n <= FLOW_MAX);
if (flow->free.n > 1) {
union flow *next;
/* Use one entry from the cluster */
ASSERT(flow_first_free <= FLOW_MAX - 2);
next = &flowtab[++flow_first_free];
ASSERT(FLOW_IDX(next) < FLOW_MAX);
ASSERT(next->f.type == FLOW_TYPE_NONE);
ASSERT(next->free.n == 0);
next->free.n = flow->free.n - 1;
next->free.next = flow->free.next;
} else {
/* Use the entire cluster */
flow_first_free = flow->free.next;
}
flow_new_entry = flow;
memset(flow, 0, sizeof(*flow));
flow_set_state(&flow->f, FLOW_STATE_NEW);
return flow;
}
/**
* flow_alloc_cancel() - Free a newly allocated flow
* @flow: Flow to deallocate
*
* @flow must be the last flow allocated by flow_alloc()
*/
void flow_alloc_cancel(union flow *flow)
{
ASSERT(flow_new_entry == flow);
ASSERT(flow->f.state == FLOW_STATE_NEW ||
flow->f.state == FLOW_STATE_INI ||
flow->f.state == FLOW_STATE_TGT ||
flow->f.state == FLOW_STATE_TYPED);
ASSERT(flow_first_free > FLOW_IDX(flow));
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
/* Put it back in a length 1 free cluster, don't attempt to fully
* reverse flow_alloc()s steps. This will get folded together the next
* time flow_defer_handler runs anyway() */
flow->free.n = 1;
flow->free.next = flow_first_free;
flow_first_free = FLOW_IDX(flow);
flow_new_entry = NULL;
}
/**
* flow_hash() - Calculate hash value for one side of a flow
* @c: Execution context
* @proto: Protocol of this flow (IP L4 protocol number)
* @pif: pif of the side to hash
* @side: Flowside (must not have unspecified parts)
*
* Return: hash value
*/
static uint64_t flow_hash(const struct ctx *c, uint8_t proto, uint8_t pif,
const struct flowside *side)
{
struct siphash_state state = SIPHASH_INIT(c->hash_secret);
inany_siphash_feed(&state, &side->oaddr);
inany_siphash_feed(&state, &side->eaddr);
return siphash_final(&state, 38, (uint64_t)proto << 40 |
(uint64_t)pif << 32 |
(uint64_t)side->oport << 16 |
(uint64_t)side->eport);
}
/**
* flow_sidx_hash() - Calculate hash value for given side of a given flow
* @c: Execution context
* @sidx: Flow & side index to get hash for
*
* Return: hash value, of the flow & side represented by @sidx
*/
static uint64_t flow_sidx_hash(const struct ctx *c, flow_sidx_t sidx)
{
const struct flow_common *f = &flow_at_sidx(sidx)->f;
const struct flowside *side = &f->side[sidx.sidei];
uint8_t pif = f->pif[sidx.sidei];
/* For the hash table to work, entries must have complete endpoint
* information, and at least a forwarding port.
*/
ASSERT(pif != PIF_NONE && !inany_is_unspecified(&side->eaddr) &&
side->eport != 0 && side->oport != 0);
return flow_hash(c, FLOW_PROTO(f), pif, side);
}
/**
* flow_hash_probe_() - Find hash bucket for a flow, given hash
* @hash: Raw hash value for flow & side
* @sidx: Flow and side to find bucket for
*
* Return: If @sidx is in the hash table, its current bucket, otherwise a
* suitable free bucket for it.
*/
static inline unsigned flow_hash_probe_(uint64_t hash, flow_sidx_t sidx)
{
unsigned b = hash % FLOW_HASH_SIZE;
/* Linear probing */
while (flow_sidx_valid(flow_hashtab[b]) &&
!flow_sidx_eq(flow_hashtab[b], sidx))
b = mod_sub(b, 1, FLOW_HASH_SIZE);
return b;
}
/**
* flow_hash_probe() - Find hash bucket for a flow
* @c: Execution context
* @sidx: Flow and side to find bucket for
*
* Return: If @sidx is in the hash table, its current bucket, otherwise a
* suitable free bucket for it.
*/
static inline unsigned flow_hash_probe(const struct ctx *c, flow_sidx_t sidx)
{
return flow_hash_probe_(flow_sidx_hash(c, sidx), sidx);
}
/**
* flow_hash_insert() - Insert side of a flow into into hash table
* @c: Execution context
* @sidx: Flow & side index
*
* Return: raw (un-modded) hash value of side of flow
*/
uint64_t flow_hash_insert(const struct ctx *c, flow_sidx_t sidx)
{
uint64_t hash = flow_sidx_hash(c, sidx);
unsigned b = flow_hash_probe_(hash, sidx);
flow_hashtab[b] = sidx;
flow_dbg(flow_at_sidx(sidx), "Side %u hash table insert: bucket: %u",
sidx.sidei, b);
return hash;
}
/**
* flow_hash_remove() - Drop side of a flow from the hash table
* @c: Execution context
* @sidx: Side of flow to remove
*/
void flow_hash_remove(const struct ctx *c, flow_sidx_t sidx)
{
unsigned b = flow_hash_probe(c, sidx), s;
if (!flow_sidx_valid(flow_hashtab[b]))
return; /* Redundant remove */
flow_dbg(flow_at_sidx(sidx), "Side %u hash table remove: bucket: %u",
sidx.sidei, b);
/* Scan the remainder of the cluster */
for (s = mod_sub(b, 1, FLOW_HASH_SIZE);
flow_sidx_valid(flow_hashtab[s]);
s = mod_sub(s, 1, FLOW_HASH_SIZE)) {
unsigned h = flow_sidx_hash(c, flow_hashtab[s]) % FLOW_HASH_SIZE;
if (!mod_between(h, s, b, FLOW_HASH_SIZE)) {
/* flow_hashtab[s] can live in flow_hashtab[b]'s slot */
debug("hash table remove: shuffle %u -> %u", s, b);
flow_hashtab[b] = flow_hashtab[s];
b = s;
}
}
flow_hashtab[b] = FLOW_SIDX_NONE;
}
/**
* flowside_lookup() - Look for a matching flowside in the flow table
* @c: Execution context
* @proto: Protocol of the flow (IP L4 protocol number)
* @pif: pif to look for in the table
* @side: Flowside to look for in the table
*
* Return: sidx of the matching flow & side, FLOW_SIDX_NONE if not found
*/
static flow_sidx_t flowside_lookup(const struct ctx *c, uint8_t proto,
uint8_t pif, const struct flowside *side)
{
flow_sidx_t sidx;
union flow *flow;
unsigned b;
b = flow_hash(c, proto, pif, side) % FLOW_HASH_SIZE;
while ((sidx = flow_hashtab[b], flow = flow_at_sidx(sidx)) &&
!(FLOW_PROTO(&flow->f) == proto &&
flow->f.pif[sidx.sidei] == pif &&
flowside_eq(&flow->f.side[sidx.sidei], side)))
b = (b + 1) % FLOW_HASH_SIZE;
return flow_hashtab[b];
}
/**
* flow_lookup_af() - Look up a flow given addressing information
* @c: Execution context
* @proto: Protocol of the flow (IP L4 protocol number)
* @pif: Interface of the flow
* @af: Address family, AF_INET or AF_INET6
* @eaddr: Guest side endpoint address (guest local address)
* @oaddr: Our guest side address (guest remote address)
* @eport: Guest side endpoint port (guest local port)
* @oport: Our guest side port (guest remote port)
*
* Return: sidx of the matching flow & side, FLOW_SIDX_NONE if not found
*/
flow_sidx_t flow_lookup_af(const struct ctx *c,
uint8_t proto, uint8_t pif, sa_family_t af,
const void *eaddr, const void *oaddr,
in_port_t eport, in_port_t oport)
{
struct flowside side;
flowside_from_af(&side, af, eaddr, eport, oaddr, oport);
return flowside_lookup(c, proto, pif, &side);
}
/**
* flow_lookup_sa() - Look up a flow given an endpoint socket address
* @c: Execution context
* @proto: Protocol of the flow (IP L4 protocol number)
* @pif: Interface of the flow
* @esa: Socket address of the endpoint
* @oport: Our port number
*
* Return: sidx of the matching flow & side, FLOW_SIDX_NONE if not found
*/
flow_sidx_t flow_lookup_sa(const struct ctx *c, uint8_t proto, uint8_t pif,
const void *esa, in_port_t oport)
{
struct flowside side = {
.oport = oport,
};
inany_from_sockaddr(&side.eaddr, &side.eport, esa);
if (inany_v4(&side.eaddr))
side.oaddr = inany_any4;
else
side.oaddr = inany_any6;
return flowside_lookup(c, proto, pif, &side);
}
/**
* flow_defer_handler() - Handler for per-flow deferred and timed tasks
* @c: Execution context
* @now: Current timestamp
*/
void flow_defer_handler(const struct ctx *c, const struct timespec *now)
{
struct flow_free_cluster *free_head = NULL;
unsigned *last_next = &flow_first_free;
bool timer = false;
unsigned idx;
if (timespec_diff_ms(now, &flow_timer_run) >= FLOW_TIMER_INTERVAL) {
timer = true;
flow_timer_run = *now;
}
ASSERT(!flow_new_entry); /* Incomplete flow at end of cycle */
for (idx = 0; idx < FLOW_MAX; idx++) {
union flow *flow = &flowtab[idx];
bool closed = false;
switch (flow->f.state) {
case FLOW_STATE_FREE: {
unsigned skip = flow->free.n;
/* First entry of a free cluster must have n >= 1 */
ASSERT(skip);
if (free_head) {
/* Merge into preceding free cluster */
free_head->n += flow->free.n;
flow->free.n = flow->free.next = 0;
} else {
/* New free cluster, add to chain */
free_head = &flow->free;
*last_next = idx;
last_next = &free_head->next;
}
/* Skip remaining empty entries */
idx += skip - 1;
continue;
}
case FLOW_STATE_NEW:
case FLOW_STATE_INI:
case FLOW_STATE_TGT:
case FLOW_STATE_TYPED:
/* Incomplete flow at end of cycle */
ASSERT(false);
break;
case FLOW_STATE_ACTIVE:
/* Nothing to do */
break;
default:
ASSERT(false);
}
switch (flow->f.type) {
case FLOW_TYPE_NONE:
ASSERT(false);
break;
case FLOW_TCP:
closed = tcp_flow_defer(&flow->tcp);
break;
case FLOW_TCP_SPLICE:
closed = tcp_splice_flow_defer(&flow->tcp_splice);
if (!closed && timer)
tcp_splice_timer(c, &flow->tcp_splice);
break;
case FLOW_PING4:
case FLOW_PING6:
if (timer)
closed = icmp_ping_timer(c, &flow->ping, now);
break;
case FLOW_UDP:
if (timer)
closed = udp_flow_timer(c, &flow->udp, now);
break;
default:
/* Assume other flow types don't need any handling */
;
}
if (closed) {
flow_set_state(&flow->f, FLOW_STATE_FREE);
memset(flow, 0, sizeof(*flow));
if (free_head) {
/* Add slot to current free cluster */
ASSERT(idx == FLOW_IDX(free_head) + free_head->n);
free_head->n++;
flow->free.n = flow->free.next = 0;
} else {
/* Create new free cluster */
free_head = &flow->free;
free_head->n = 1;
*last_next = idx;
last_next = &free_head->next;
}
} else {
free_head = NULL;
}
}
*last_next = FLOW_MAX;
}
/**
* flow_init() - Initialise flow related data structures
*/
void flow_init(void)
{
unsigned b;
/* Initial state is a single free cluster containing the whole table */
flowtab[0].free.n = FLOW_MAX;
flowtab[0].free.next = FLOW_MAX;
for (b = 0; b < FLOW_HASH_SIZE; b++)
flow_hashtab[b] = FLOW_SIDX_NONE;
}