1
0
mirror of https://passt.top/passt synced 2024-07-04 00:42:41 +00:00
passt/passt.c
Stefano Brivio 39ad062100 tcp: Introduce scatter-gather IO path from socket to tap
...similarly to what was done for UDP. Quick performance test with
32KiB buffers, host to VM:

$ iperf3 -c 192.0.2.2 -N
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  8.47 GBytes  7.27 Gbits/sec    0             sender
[  5]   0.00-10.00  sec  8.45 GBytes  7.26 Gbits/sec                  receiver

$ iperf3 -c 2a01:598:88ba:a056:271f:473a:c0d9:abc1
[ ID] Interval           Transfer     Bitrate         Retr
[  5]   0.00-10.00  sec  8.43 GBytes  7.24 Gbits/sec    0             sender
[  5]   0.00-10.00  sec  8.41 GBytes  7.22 Gbits/sec                  receiver

Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-26 14:20:36 +02:00

630 lines
15 KiB
C

// SPDX-License-Identifier: AGPL-3.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* passt.c - Daemon implementation
*
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*
* Grab Ethernet frames from AF_UNIX socket (in "passt" mode) or tap device (in
* "pasta" mode), build SOCK_DGRAM/SOCK_STREAM sockets for each 5-tuple from
* TCP, UDP packets, perform connection tracking and forward them. Forward
* packets received on sockets back to the UNIX domain socket (typically, a
* socket virtio_net file descriptor from qemu) or to the tap device (typically,
* created in a separate network namespace).
*/
#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/uio.h>
#include <ifaddrs.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <arpa/inet.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmpv6.h>
#include <linux/un.h>
#include <linux/if_link.h>
#include <net/ethernet.h>
#include <stdlib.h>
#include <unistd.h>
#include <net/if.h>
#include <netdb.h>
#include <string.h>
#include <errno.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <time.h>
#include <syslog.h>
#include <sys/stat.h>
#include "util.h"
#include "passt.h"
#include "dhcpv6.h"
#include "icmp.h"
#include "tcp.h"
#include "udp.h"
#include "pcap.h"
#include "tap.h"
#define EPOLL_EVENTS 10
#define __TIMER_INTERVAL MIN(TCP_TIMER_INTERVAL, UDP_TIMER_INTERVAL)
#define TIMER_INTERVAL MIN(__TIMER_INTERVAL, ICMP_TIMER_INTERVAL)
char pkt_buf [PKT_BUF_BYTES];
#ifdef DEBUG
char *ip_proto_str[IPPROTO_SCTP + 1] = {
[IPPROTO_ICMP] = "ICMP",
[IPPROTO_TCP] = "TCP",
[IPPROTO_UDP] = "UDP",
[IPPROTO_ICMPV6] = "ICMPV6",
[IPPROTO_SCTP] = "SCTP",
};
#endif
/**
* struct nl_request - Netlink request filled and sent by get_routes()
* @nlh: Netlink message header
* @rtm: Routing Netlink message
*/
struct nl_request {
struct nlmsghdr nlh;
struct rtmsg rtm;
};
/**
* get_routes() - Get default route and fill in routable interface name
* @c: Execution context
*/
static void get_routes(struct ctx *c)
{
struct nl_request req = {
.nlh.nlmsg_type = RTM_GETROUTE,
.nlh.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP | NLM_F_EXCL,
.nlh.nlmsg_len = sizeof(struct nl_request),
.nlh.nlmsg_seq = 1,
.rtm.rtm_family = AF_INET,
.rtm.rtm_table = RT_TABLE_MAIN,
.rtm.rtm_scope = RT_SCOPE_UNIVERSE,
.rtm.rtm_type = RTN_UNICAST,
};
struct sockaddr_nl addr = {
.nl_family = AF_NETLINK,
};
struct nlmsghdr *nlh;
struct rtattr *rta;
struct rtmsg *rtm;
char buf[BUFSIZ];
int s, n, na;
c->v6 = -1;
s = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (s < 0) {
perror("netlink socket");
goto out;
}
if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
perror("netlink bind");
goto out;
}
v6:
if (send(s, &req, sizeof(req), 0) < 0) {
perror("netlink send");
goto out;
}
n = recv(s, &buf, sizeof(buf), 0);
if (n < 0) {
perror("netlink recv");
goto out;
}
nlh = (struct nlmsghdr *)buf;
for ( ; NLMSG_OK(nlh, n); nlh = NLMSG_NEXT(nlh, n)) {
rtm = (struct rtmsg *)NLMSG_DATA(nlh);
if (rtm->rtm_dst_len ||
(rtm->rtm_family != AF_INET && rtm->rtm_family != AF_INET6))
continue;
rta = (struct rtattr *)RTM_RTA(rtm);
na = RTM_PAYLOAD(nlh);
for ( ; RTA_OK(rta, na); rta = RTA_NEXT(rta, na)) {
if (rta->rta_type == RTA_GATEWAY &&
rtm->rtm_family == AF_INET && !c->v4) {
memcpy(&c->gw4, RTA_DATA(rta), sizeof(c->gw4));
c->v4 = 1;
}
if (rta->rta_type == RTA_GATEWAY &&
rtm->rtm_family == AF_INET6 && !c->v6) {
memcpy(&c->gw6, RTA_DATA(rta), sizeof(c->gw6));
c->v6 = 1;
}
if (rta->rta_type == RTA_OIF && !*c->ifn) {
if_indextoname(*(unsigned *)RTA_DATA(rta),
c->ifn);
}
}
if (nlh->nlmsg_type == NLMSG_DONE)
break;
}
if (c->v6 == -1) {
c->v6 = 0;
req.rtm.rtm_family = AF_INET6;
req.nlh.nlmsg_seq++;
recv(s, &buf, sizeof(buf), 0);
goto v6;
}
out:
close(s);
if (!(c->v4 || c->v6) || !*c->ifn) {
err("No routing information");
exit(EXIT_FAILURE);
}
}
/**
* get_addrs() - Fetch MAC, IP addresses, masks of external routable interface
* @c: Execution context
*/
static void get_addrs(struct ctx *c)
{
struct ifreq ifr = {
.ifr_addr.sa_family = AF_INET,
};
struct ifaddrs *ifaddr, *ifa;
int s, v4 = 0, v6 = 0;
if (getifaddrs(&ifaddr) == -1) {
perror("getifaddrs");
goto out;
}
for (ifa = ifaddr; ifa; ifa = ifa->ifa_next) {
struct sockaddr_in *in_addr;
struct sockaddr_in6 *in6_addr;
if (strcmp(ifa->ifa_name, c->ifn))
continue;
if (!ifa->ifa_addr)
continue;
if (ifa->ifa_addr->sa_family == AF_INET && !v4) {
in_addr = (struct sockaddr_in *)ifa->ifa_addr;
c->addr4_seen = c->addr4 = in_addr->sin_addr.s_addr;
in_addr = (struct sockaddr_in *)ifa->ifa_netmask;
c->mask4 = in_addr->sin_addr.s_addr;
v4 = 1;
} else if (ifa->ifa_addr->sa_family == AF_INET6 && !v6) {
in6_addr = (struct sockaddr_in6 *)ifa->ifa_addr;
memcpy(&c->addr6, &in6_addr->sin6_addr,
sizeof(c->addr6));
memcpy(&c->addr6_seen, &in6_addr->sin6_addr,
sizeof(c->addr6_seen));
memcpy(&c->addr6_ll_seen, &in6_addr->sin6_addr,
sizeof(c->addr6_seen));
v6 = 1;
}
if (v4 == c->v4 && v6 == c->v6)
break;
}
freeifaddrs(ifaddr);
if (v4 != c->v4 || v6 != c->v6)
goto out;
s = socket(AF_INET, SOCK_DGRAM, 0);
if (s < 0) {
perror("socket SIOCGIFHWADDR");
goto out;
}
strncpy(ifr.ifr_name, c->ifn, IF_NAMESIZE);
if (ioctl(s, SIOCGIFHWADDR, &ifr) < 0) {
perror("SIOCGIFHWADDR");
goto out;
}
close(s);
memcpy(c->mac, ifr.ifr_hwaddr.sa_data, ETH_ALEN);
return;
out:
err("Couldn't get addresses for routable interface");
exit(EXIT_FAILURE);
}
/**
* get_dns() - Get nameserver addresses from local /etc/resolv.conf
* @c: Execution context
*/
static void get_dns(struct ctx *c)
{
struct in6_addr *dns6 = &c->dns6[0];
struct fqdn *s = c->dns_search;
uint32_t *dns4 = &c->dns4[0];
char buf[BUFSIZ], *p, *end;
FILE *r;
r = fopen("/etc/resolv.conf", "r");
while (fgets(buf, BUFSIZ, r)) {
if (strstr(buf, "nameserver ") == buf) {
p = strrchr(buf, ' ');
if (!p)
continue;
end = strpbrk(buf, "%\n");
if (end)
*end = 0;
if (dns4 - &c->dns4[0] < ARRAY_SIZE(c->dns4) &&
inet_pton(AF_INET, p + 1, dns4))
dns4++;
if (dns6 - &c->dns6[0] < ARRAY_SIZE(c->dns6) &&
inet_pton(AF_INET6, p + 1, dns6))
dns6++;
} else if (strstr(buf, "search ") == buf &&
s == c->dns_search) {
end = strpbrk(buf, "\n");
if (end)
*end = 0;
p = strtok(buf, " \t");
while ((p = strtok(NULL, " \t")) &&
s - c->dns_search < ARRAY_SIZE(c->dns_search)) {
strncpy(s->n, p, sizeof(c->dns_search[0]));
s++;
}
}
}
fclose(r);
if (dns4 == c->dns4 && dns6 == c->dns6)
warn("Couldn't get any nameserver address");
}
/**
* get_bound_ports_ns() - Get TCP and UDP ports bound in namespace
* @arg: Execution context
*
* Return: 0
*/
static int get_bound_ports_ns(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c->pasta_pid);
if (c->v4) {
procfs_scan_listen("tcp", c->tcp.port4_to_tap);
procfs_scan_listen("tcp", c->udp.port4_to_tap);
procfs_scan_listen("udp", c->udp.port4_to_tap);
procfs_scan_listen("tcp", c->tcp.port4_to_ns);
procfs_scan_listen("tcp", c->udp.port4_to_ns);
procfs_scan_listen("udp", c->udp.port4_to_ns);
}
if (c->v6) {
if (c->v4) {
procfs_scan_listen("tcp6", c->tcp.port4_to_tap);
procfs_scan_listen("tcp6", c->udp.port4_to_tap);
procfs_scan_listen("udp6", c->udp.port4_to_tap);
procfs_scan_listen("tcp6", c->tcp.port4_to_ns);
procfs_scan_listen("tcp6", c->udp.port4_to_ns);
procfs_scan_listen("udp6", c->udp.port4_to_ns);
}
procfs_scan_listen("tcp6", c->tcp.port6_to_tap);
procfs_scan_listen("tcp6", c->udp.port6_to_tap);
procfs_scan_listen("udp6", c->udp.port6_to_tap);
procfs_scan_listen("tcp6", c->tcp.port6_to_ns);
procfs_scan_listen("tcp6", c->udp.port6_to_ns);
procfs_scan_listen("udp6", c->udp.port6_to_ns);
}
return 0;
}
/**
* get_bound_ports() - Get maps of ports that should have bound sockets
* @c: Execution context
*/
static void get_bound_ports(struct ctx *c)
{
char ns_fn_stack[NS_FN_STACK_SIZE];
clone(get_bound_ports_ns, ns_fn_stack + sizeof(ns_fn_stack) / 2,
CLONE_VM | CLONE_VFORK | CLONE_FILES | SIGCHLD, (void *)c);
if (c->v4) {
procfs_scan_listen("tcp", c->tcp.port4_to_init);
procfs_scan_listen("tcp", c->udp.port4_to_init);
procfs_scan_listen("udp", c->udp.port4_to_init);
}
if (c->v6) {
if (c->v4) {
procfs_scan_listen("tcp6", c->tcp.port4_to_init);
procfs_scan_listen("tcp6", c->udp.port4_to_init);
procfs_scan_listen("udp6", c->udp.port4_to_init);
}
procfs_scan_listen("tcp6", c->tcp.port6_to_init);
procfs_scan_listen("tcp6", c->udp.port6_to_init);
procfs_scan_listen("udp6", c->udp.port6_to_init);
}
}
/**
* sock_handler() - Event handler for L4 sockets
* @c: Execution context
* @ref: epoll reference
* @events: epoll events
* @now: Current timestamp
*/
static void sock_handler(struct ctx *c, union epoll_ref ref, uint32_t events,
struct timespec *now)
{
debug("%s packet from socket %i", IP_PROTO_STR(ref.proto), ref.s);
if (ref.proto == IPPROTO_TCP)
tcp_sock_handler( c, ref, events, now);
else if (ref.proto == IPPROTO_UDP)
udp_sock_handler( c, ref, events, now);
else if (ref.proto == IPPROTO_ICMP || ref.proto == IPPROTO_ICMPV6)
icmp_sock_handler(c, ref, events, now);
}
/**
* timer_handler() - Run periodic tasks for L4 protocol handlers
* @c: Execution context
* @now: Current timestamp
*/
static void timer_handler(struct ctx *c, struct timespec *now)
{
if (timespec_diff_ms(now, &c->tcp.timer_run) >= TCP_TIMER_INTERVAL) {
tcp_timer(c, now);
c->tcp.timer_run = *now;
}
if (timespec_diff_ms(now, &c->udp.timer_run) >= UDP_TIMER_INTERVAL) {
udp_timer(c, now);
c->udp.timer_run = *now;
}
if (timespec_diff_ms(now, &c->icmp.timer_run) >= ICMP_TIMER_INTERVAL) {
icmp_timer(c, now);
c->icmp.timer_run = *now;
}
}
/**
* proto_update_l2_buf() - Update scatter-gather L2 buffers in protocol handlers
* @eth_d: Ethernet destination address, NULL if unchanged
* @eth_s: Ethernet source address, NULL if unchanged
* @ip_da: Pointer to IPv4 destination address, NULL if unchanged
*/
void proto_update_l2_buf(unsigned char *eth_d, unsigned char *eth_s,
uint32_t *ip_da)
{
tcp_update_l2_buf(eth_d, eth_s, ip_da);
udp_update_l2_buf(eth_d, eth_s, ip_da);
}
/**
* usage_passt() - Print usage for "passt" mode and exit
* @name: Executable name
*/
void usage_passt(const char *name)
{
fprintf(stderr, "Usage: %s\n", name);
exit(EXIT_FAILURE);
}
/**
* usage_pasta() - Print usage for "pasta" mode and exit
* @name: Executable name
*/
void usage_pasta(const char *name)
{
fprintf(stderr, "Usage: %s TARGET_PID\n", name);
exit(EXIT_FAILURE);
}
/**
* main() - Entry point and main loop
* @argc: Argument count
* @argv: Target PID for pasta mode
*
* Return: 0 once interrupted, non-zero on failure
*/
int main(int argc, char **argv)
{
char buf6[INET6_ADDRSTRLEN], buf4[INET_ADDRSTRLEN], *log_name;
struct epoll_event events[EPOLL_EVENTS];
struct ctx c = { 0 };
struct rlimit limit;
struct timespec now;
int nfds, i;
if (strstr(argv[0], "pasta") || strstr(argv[0], "passt4netns")) {
if (argc != 2)
usage_pasta(argv[0]);
errno = 0;
c.pasta_pid = strtol(argv[1], NULL, 0);
if (c.pasta_pid < 0 || errno)
usage_pasta(argv[0]);
c.mode = MODE_PASTA;
log_name = "pasta";
} else {
if (argc != 1)
usage_passt(argv[0]);
c.mode = MODE_PASST;
log_name = "passt";
memset(&c.mac_guest, 0xff, sizeof(c.mac_guest));
}
if (clock_gettime(CLOCK_MONOTONIC, &now)) {
perror("clock_gettime");
exit(EXIT_FAILURE);
}
c.epollfd = epoll_create1(0);
if (c.epollfd == -1) {
perror("epoll_create1");
exit(EXIT_FAILURE);
}
if (getrlimit(RLIMIT_NOFILE, &limit)) {
perror("getrlimit");
exit(EXIT_FAILURE);
}
limit.rlim_cur = limit.rlim_max;
if (setrlimit(RLIMIT_NOFILE, &limit)) {
perror("setrlimit");
exit(EXIT_FAILURE);
}
#if DEBUG
openlog(log_name, 0, LOG_DAEMON);
#else
openlog(log_name, isatty(fileno(stdout)) ? 0 : LOG_PERROR, LOG_DAEMON);
#endif
get_routes(&c);
get_addrs(&c);
get_dns(&c);
if (c.mode == MODE_PASST) {
memset(&c.tcp.port4_to_tap, 0xff, PORT_EPHEMERAL_MIN / 8);
memset(&c.tcp.port6_to_tap, 0xff, PORT_EPHEMERAL_MIN / 8);
memset(&c.udp.port4_to_tap, 0xff, PORT_EPHEMERAL_MIN / 8);
memset(&c.udp.port6_to_tap, 0xff, PORT_EPHEMERAL_MIN / 8);
} else {
get_bound_ports(&c);
}
proto_update_l2_buf(c.mac_guest, c.mac, &c.addr4);
if (udp_sock_init(&c) || tcp_sock_init(&c))
exit(EXIT_FAILURE);
if (c.v6)
dhcpv6_init(&c);
if (c.v4) {
info("ARP:");
info(" address: %02x:%02x:%02x:%02x:%02x:%02x from %s",
c.mac[0], c.mac[1], c.mac[2], c.mac[3], c.mac[4], c.mac[5],
c.ifn);
info("DHCP:");
info(" assign: %s",
inet_ntop(AF_INET, &c.addr4, buf4, sizeof(buf4)));
info(" mask: %s",
inet_ntop(AF_INET, &c.mask4, buf4, sizeof(buf4)));
info(" router: %s",
inet_ntop(AF_INET, &c.gw4, buf4, sizeof(buf4)));
for (i = 0; c.dns4[i]; i++) {
if (!i)
info(" DNS:");
inet_ntop(AF_INET, &c.dns4[i], buf4, sizeof(buf4));
info(" %s", buf4);
}
for (i = 0; *c.dns_search[i].n; i++) {
if (!i)
info(" search:");
info(" %s", c.dns_search[i].n);
}
}
if (c.v6) {
info("NDP/DHCPv6:");
info(" assign: %s",
inet_ntop(AF_INET6, &c.addr6, buf6, sizeof(buf6)));
info(" router: %s",
inet_ntop(AF_INET6, &c.gw6, buf6, sizeof(buf6)));
for (i = 0; !IN6_IS_ADDR_UNSPECIFIED(&c.dns6[i]); i++) {
if (!i)
info(" DNS:");
inet_ntop(AF_INET6, &c.dns6[i], buf6, sizeof(buf6));
info(" %s", buf6);
}
for (i = 0; *c.dns_search[i].n; i++) {
if (!i)
info(" search:");
info(" %s", c.dns_search[i].n);
}
}
tap_sock_init(&c);
#ifndef DEBUG
if (isatty(fileno(stdout)) && daemon(0, 0)) {
fprintf(stderr, "Failed to fork into background\n");
exit(EXIT_FAILURE);
}
#endif
loop:
nfds = epoll_wait(c.epollfd, events, EPOLL_EVENTS, TIMER_INTERVAL);
if (nfds == -1 && errno != EINTR) {
perror("epoll_wait");
exit(EXIT_FAILURE);
}
clock_gettime(CLOCK_MONOTONIC, &now);
for (i = 0; i < nfds; i++) {
union epoll_ref ref = *((union epoll_ref *)&events[i].data.u64);
if (events[i].data.fd == c.fd_tap)
tap_handler(&c, events[i].events, &now);
else
sock_handler(&c, ref, events[i].events, &now);
}
timer_handler(&c, &now);
goto loop;
return 0;
}