1
0
mirror of https://passt.top/passt synced 2025-01-22 04:05:22 +00:00
passt/tcp.c
Stefano Brivio a8f4fc481c tcp: Mask EPOLLIN altogether if we're blocked waiting on an ACK from the guest
There are pretty much two cases of the (misnomer) STALLED: in one
case, we could send more data to the guest if it becomes available,
and in another case, we can't, because we filled the window.

If, in this second case, we keep EPOLLIN enabled, but never read from
the socket, we get short but CPU-annoying storms of EPOLLIN events,
upon which we reschedule the ACK timeout handler, never read from the
socket, go back to epoll_wait(), and so on:

  timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0
  epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1
  timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0
  epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1
  timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0
  epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1

also known as:

  29.1517: Flow 2 (TCP connection): timer expires in 2.000s
  29.1517: Flow 2 (TCP connection): timer expires in 2.000s
  29.1517: Flow 2 (TCP connection): timer expires in 2.000s

which, for some reason, becomes very visible with muvm and aria2c
downloading from a server nearby in parallel chunks.

That's because EPOLLIN isn't cleared if we don't read from the socket,
and even with EPOLLET, epoll_wait() will repeatedly wake us up until
we actually read something.

In this case, we don't want to subscribe to EPOLLIN at all: all we're
waiting for is an ACK segment from the guest. Differentiate this case
with a new connection flag, ACK_FROM_TAP_BLOCKS, which doesn't just
indicate that we're waiting for an ACK from the guest
(ACK_FROM_TAP_DUE), but also that we're blocked waiting for it.

If this flag is set before we set STALLED, EPOLLIN will be masked
while we set EPOLLET because of STALLED. Whenever we clear STALLED,
we also clear this flag.

This is definitely not elegant, but it's a minimal fix.

We can probably simplify this at a later point by having a category
of connection flags directly corresponding to epoll flags, and
dropping STALLED altogether, or, perhaps, always using EPOLLET (but
we need a mechanism to re-check sockets for pending data if we can't
temporarily write to the guest).

I suspect that this might also be implied in
https://github.com/containers/podman/issues/23686, hence the Link:
tag. It doesn't necessarily mean I'm fixing it (I can't reproduce
that).

Link: https://github.com/containers/podman/issues/23686
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2025-01-16 21:15:33 +01:00

2619 lines
70 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* tcp.c - TCP L2-L4 translation state machine
*
* Copyright (c) 2020-2022 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
*
* PASST mode
* ==========
*
* This implementation maps TCP traffic between a single L2 interface (tap) and
* native TCP (L4) sockets, mimicking and reproducing as closely as possible the
* inferred behaviour of applications running on a guest, connected via said L2
* interface. Four connection flows are supported:
* - from the local host to the guest behind the tap interface:
* - this is the main use case for proxies in service meshes
* - we bind to configured local ports, and relay traffic between L4 sockets
* with local endpoints and the L2 interface
* - from remote hosts to the guest behind the tap interface:
* - this might be needed for services that need to be addressed directly,
* and typically configured with special port forwarding rules (which are
* not needed here)
* - we also relay traffic between L4 sockets with remote endpoints and the L2
* interface
* - from the guest to the local host:
* - this is not observed in practice, but implemented for completeness and
* transparency
* - from the guest to external hosts:
* - this might be needed for applications running on the guest that need to
* directly access internet services (e.g. NTP)
*
* Relevant goals are:
* - transparency: sockets need to behave as if guest applications were running
* directly on the host. This is achieved by:
* - avoiding port and address translations whenever possible
* - mirroring TCP dynamics by observation of socket parameters (TCP_INFO
* socket option) and TCP headers of packets coming from the tap interface,
* reapplying those parameters in both flow directions (including TCP_MSS
* socket option)
* - simplicity: only a small subset of TCP logic is implemented here and
* delegated as much as possible to the TCP implementations of guest and host
* kernel. This is achieved by:
* - avoiding a complete TCP stack reimplementation, with a modified TCP state
* machine focused on the translation of observed events instead
* - mirroring TCP dynamics as described above and hence avoiding the need for
* segmentation, explicit queueing, and reassembly of segments
* - security:
* - no dynamic memory allocation is performed
* - TODO: synflood protection
*
* Portability is limited by usage of Linux-specific socket options.
*
*
* Limits
* ------
*
* To avoid the need for dynamic memory allocation, a maximum, reasonable amount
* of connections is defined by TCP_MAX_CONNS (currently 128k).
*
* Data needs to linger on sockets as long as it's not acknowledged by the
* guest, and is read using MSG_PEEK into preallocated static buffers sized
* to the maximum supported window, 16 MiB ("discard" buffer, for already-sent
* data) plus a number of maximum-MSS-sized buffers. This imposes a practical
* limitation on window scaling, that is, the maximum factor is 256. Larger
* factors will be accepted, but resulting, larger values are never advertised
* to the other side, and not used while queueing data.
*
*
* Ports
* -----
*
* To avoid the need for ad-hoc configuration of port forwarding or allowed
* ports, listening sockets can be opened and bound to all unbound ports on the
* host, as far as process capabilities allow. This service needs to be started
* after any application proxy that needs to bind to local ports. Mapped ports
* can also be configured explicitly.
*
* No port translation is needed for connections initiated remotely or by the
* local host: source port from socket is reused while establishing connections
* to the guest.
*
* For connections initiated by the guest, it's not possible to force the same
* source port as connections are established by the host kernel: that's the
* only port translation needed.
*
*
* Connection tracking and storage
* -------------------------------
*
* Connections are tracked by struct tcp_tap_conn entries in the @tc
* array, containing addresses, ports, TCP states and parameters. This
* is statically allocated and indexed by an arbitrary connection
* number. The array is compacted whenever a connection is closed, by
* remapping the highest connection index in use to the one freed up.
*
* References used for the epoll interface report the connection index used for
* the @tc array.
*
* IPv4 addresses are stored as IPv4-mapped IPv6 addresses to avoid the need for
* separate data structures depending on the protocol version.
*
* - Inbound connection requests (to the guest) are mapped using the triple
* < source IP address, source port, destination port >
* - Outbound connection requests (from the guest) are mapped using the triple
* < destination IP address, destination port, source port >
* where the source port is the one used by the guest, not the one used by the
* corresponding host socket
*
*
* Initialisation
* --------------
*
* Up to 2^15 + 2^14 listening sockets (excluding ephemeral ports, repeated for
* IPv4 and IPv6) can be opened and bound to wildcard addresses. Some will fail
* to bind (for low ports, or ports already bound, e.g. by a proxy). These are
* added to the epoll list, with no separate storage.
*
*
* Events and states
* -----------------
*
* Instead of tracking connection states using a state machine, connection
* events are used to determine state and actions for a given connection. This
* makes the implementation simpler as most of the relevant tasks deal with
* reactions to events, rather than state-associated actions. For user
* convenience, approximate states are mapped in logs from events by
* @tcp_state_str.
*
* The events are:
*
* - SOCK_ACCEPTED connection accepted from socket, SYN sent to tap/guest
*
* - TAP_SYN_RCVD tap/guest initiated connection, SYN received
*
* - TAP_SYN_ACK_SENT SYN, ACK sent to tap/guest, valid for TAP_SYN_RCVD only
*
* - ESTABLISHED connection established, the following events are valid:
*
* - SOCK_FIN_RCVD FIN (EPOLLRDHUP) received from socket
*
* - SOCK_FIN_SENT FIN (write shutdown) sent to socket
*
* - TAP_FIN_RCVD FIN received from tap/guest
*
* - TAP_FIN_SENT FIN sent to tap/guest
*
* - TAP_FIN_ACKED ACK to FIN seen from tap/guest
*
* Setting any event in CONN_STATE_BITS (SOCK_ACCEPTED, TAP_SYN_RCVD,
* ESTABLISHED) clears all the other events, as those represent the fundamental
* connection states. No events (events == CLOSED) means the connection is
* closed.
*
* Connection setup
* ----------------
*
* - inbound connection (from socket to guest): on accept() from listening
* socket, the new socket is mapped in connection tracking table, and
* three-way handshake initiated towards the guest, advertising MSS and window
* size and scaling from socket parameters
* - outbound connection (from guest to socket): on SYN segment from guest, a
* new socket is created and mapped in connection tracking table, setting
* MSS and window clamping from header and option of the observed SYN segment
*
*
* Aging and timeout
* -----------------
*
* Timeouts are implemented by means of timerfd timers, set based on flags:
*
* - SYN_TIMEOUT: if no ACK is received from tap/guest during handshake (flag
* ACK_FROM_TAP_DUE without ESTABLISHED event) within this time, reset the
* connection
*
* - ACK_TIMEOUT: if no ACK segment was received from tap/guest, after sending
* data (flag ACK_FROM_TAP_DUE with ESTABLISHED event), re-send data from the
* socket and reset sequence to what was acknowledged. If this persists for
* more than TCP_MAX_RETRANS times in a row, reset the connection
*
* - FIN_TIMEOUT: if a FIN segment was sent to tap/guest (flag ACK_FROM_TAP_DUE
* with TAP_FIN_SENT event), and no ACK is received within this time, reset
* the connection
*
* - FIN_TIMEOUT: if a FIN segment was acknowledged by tap/guest and a FIN
* segment (write shutdown) was sent via socket (events SOCK_FIN_SENT and
* TAP_FIN_ACKED), but no socket activity is detected from the socket within
* this time, reset the connection
*
* - ACT_TIMEOUT, in the presence of any event: if no activity is detected on
* either side, the connection is reset
*
* - ACK_INTERVAL elapsed after data segment received from tap without having
* sent an ACK segment, or zero-sized window advertised to tap/guest (flag
* ACK_TO_TAP_DUE): forcibly check if an ACK segment can be sent
*
*
* Summary of data flows (with ESTABLISHED event)
* ----------------------------------------------
*
* @seq_to_tap: next sequence for packets to tap/guest
* @seq_ack_from_tap: last ACK number received from tap/guest
* @seq_from_tap: next sequence for packets from tap/guest (expected)
* @seq_ack_to_tap: last ACK number sent to tap/guest
*
* @seq_init_from_tap: initial sequence number from tap/guest
* @seq_init_to_tap: initial sequence number from tap/guest
*
* @wnd_from_tap: last window size received from tap, never scaled
* @wnd_from_tap: last window size advertised from tap, never scaled
*
* - from socket to tap/guest:
* - on new data from socket:
* - peek into buffer
* - send data to tap/guest:
* - starting at offset (@seq_to_tap - @seq_ack_from_tap)
* - in MSS-sized segments
* - increasing @seq_to_tap at each segment
* - up to window (until @seq_to_tap - @seq_ack_from_tap <= @wnd_from_tap)
* - on read error, send RST to tap/guest, close socket
* - on zero read, send FIN to tap/guest, set TAP_FIN_SENT
* - on ACK from tap/guest:
* - set @ts_ack_from_tap
* - check if it's the second duplicated ACK
* - consume buffer by difference between new ack_seq and @seq_ack_from_tap
* - update @seq_ack_from_tap from ack_seq in header
* - on two duplicated ACKs, reset @seq_to_tap to @seq_ack_from_tap, and
* resend with steps listed above
*
* - from tap/guest to socket:
* - on packet from tap/guest:
* - set @ts_tap_act
* - check seq from header against @seq_from_tap, if data is missing, send
* two ACKs with number @seq_ack_to_tap, discard packet
* - otherwise queue data to socket, set @seq_from_tap to seq from header
* plus payload length
* - in ESTABLISHED state, send ACK to tap as soon as we queue to the
* socket. In other states, query socket for TCP_INFO, set
* @seq_ack_to_tap to (tcpi_bytes_acked + @seq_init_from_tap) % 2^32 and
* send ACK to tap/guest
*
*
* PASTA mode
* ==========
*
* For traffic directed to TCP ports configured for mapping to the tuntap device
* in the namespace, and for non-local traffic coming from the tuntap device,
* the implementation is identical as the PASST mode described in the previous
* section.
*
* For local traffic directed to TCP ports configured for direct mapping between
* namespaces, see the implementation in tcp_splice.c.
*/
#include <sched.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <time.h>
#include <arpa/inet.h>
#include "checksum.h"
#include "util.h"
#include "iov.h"
#include "ip.h"
#include "passt.h"
#include "tap.h"
#include "siphash.h"
#include "pcap.h"
#include "tcp_splice.h"
#include "log.h"
#include "inany.h"
#include "flow.h"
#include "linux_dep.h"
#include "flow_table.h"
#include "tcp_internal.h"
#include "tcp_buf.h"
#include "tcp_vu.h"
/* MSS rounding: see SET_MSS() */
#define MSS_DEFAULT 536
#define WINDOW_DEFAULT 14600 /* RFC 6928 */
#define ACK_INTERVAL 10 /* ms */
#define SYN_TIMEOUT 10 /* s */
#define ACK_TIMEOUT 2
#define FIN_TIMEOUT 60
#define ACT_TIMEOUT 7200
#define LOW_RTT_TABLE_SIZE 8
#define LOW_RTT_THRESHOLD 10 /* us */
#define ACK_IF_NEEDED 0 /* See tcp_send_flag() */
#define CONN_IS_CLOSING(conn) \
(((conn)->events & ESTABLISHED) && \
((conn)->events & (SOCK_FIN_RCVD | TAP_FIN_RCVD)))
#define CONN_HAS(conn, set) (((conn)->events & (set)) == (set))
static const char *tcp_event_str[] __attribute((__unused__)) = {
"SOCK_ACCEPTED", "TAP_SYN_RCVD", "ESTABLISHED", "TAP_SYN_ACK_SENT",
"SOCK_FIN_RCVD", "SOCK_FIN_SENT", "TAP_FIN_RCVD", "TAP_FIN_SENT",
"TAP_FIN_ACKED",
};
static const char *tcp_state_str[] __attribute((__unused__)) = {
"SYN_RCVD", "SYN_SENT", "ESTABLISHED",
"SYN_RCVD", /* approximately maps to TAP_SYN_ACK_SENT */
/* Passive close: */
"CLOSE_WAIT", "CLOSE_WAIT", "LAST_ACK", "LAST_ACK", "LAST_ACK",
/* Active close (+5): */
"CLOSING", "FIN_WAIT_1", "FIN_WAIT_1", "FIN_WAIT_2", "TIME_WAIT",
};
static const char *tcp_flag_str[] __attribute((__unused__)) = {
"STALLED", "LOCAL", "ACTIVE_CLOSE", "ACK_TO_TAP_DUE",
"ACK_FROM_TAP_DUE", "ACK_FROM_TAP_BLOCKS",
};
/* Listening sockets, used for automatic port forwarding in pasta mode only */
static int tcp_sock_init_ext [NUM_PORTS][IP_VERSIONS];
static int tcp_sock_ns [NUM_PORTS][IP_VERSIONS];
/* Table of our guest side addresses with very low RTT (assumed to be local to
* the host), LRU
*/
static union inany_addr low_rtt_dst[LOW_RTT_TABLE_SIZE];
char tcp_buf_discard [MAX_WINDOW];
/* Does the kernel support TCP_PEEK_OFF? */
bool peek_offset_cap;
/* Size of data returned by TCP_INFO getsockopt() */
socklen_t tcp_info_size;
#define tcp_info_cap(f_) \
((offsetof(struct tcp_info_linux, tcpi_##f_) + \
sizeof(((struct tcp_info_linux *)NULL)->tcpi_##f_)) <= tcp_info_size)
/* Kernel reports sending window in TCP_INFO (kernel commit 8f7baad7f035) */
#define snd_wnd_cap tcp_info_cap(snd_wnd)
/* Kernel reports bytes acked in TCP_INFO (kernel commit 0df48c26d84) */
#define bytes_acked_cap tcp_info_cap(bytes_acked)
/* Kernel reports minimum RTT in TCP_INFO (kernel commit cd9b266095f4) */
#define min_rtt_cap tcp_info_cap(min_rtt)
/* sendmsg() to socket */
static struct iovec tcp_iov [UIO_MAXIOV];
/* Pools for pre-opened sockets (in init) */
int init_sock_pool4 [TCP_SOCK_POOL_SIZE];
int init_sock_pool6 [TCP_SOCK_POOL_SIZE];
/**
* conn_at_sidx() - Get TCP connection specific flow at given sidx
* @sidx: Flow and side to retrieve
*
* Return: TCP connection at @sidx, or NULL of @sidx is invalid. Asserts if the
* flow at @sidx is not FLOW_TCP.
*/
static struct tcp_tap_conn *conn_at_sidx(flow_sidx_t sidx)
{
union flow *flow = flow_at_sidx(sidx);
if (!flow)
return NULL;
ASSERT(flow->f.type == FLOW_TCP);
return &flow->tcp;
}
/**
* tcp_set_peek_offset() - Set SO_PEEK_OFF offset on a socket if supported
* @s: Socket to update
* @offset: Offset in bytes
*
* Return: -1 when it fails, 0 otherwise.
*/
int tcp_set_peek_offset(int s, int offset)
{
if (!peek_offset_cap)
return 0;
if (setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &offset, sizeof(offset))) {
err("Failed to set SO_PEEK_OFF to %i in socket %i", offset, s);
return -1;
}
return 0;
}
/**
* tcp_conn_epoll_events() - epoll events mask for given connection state
* @events: Current connection events
* @conn_flags Connection flags
*
* Return: epoll events mask corresponding to implied connection state
*/
static uint32_t tcp_conn_epoll_events(uint8_t events, uint8_t conn_flags)
{
if (!events)
return 0;
if (events & ESTABLISHED) {
if (events & TAP_FIN_SENT)
return EPOLLET;
if (conn_flags & STALLED) {
if (conn_flags & ACK_FROM_TAP_BLOCKS)
return EPOLLRDHUP | EPOLLET;
return EPOLLIN | EPOLLRDHUP | EPOLLET;
}
return EPOLLIN | EPOLLRDHUP;
}
if (events == TAP_SYN_RCVD)
return EPOLLOUT | EPOLLET | EPOLLRDHUP;
return EPOLLET | EPOLLRDHUP;
}
/**
* tcp_epoll_ctl() - Add/modify/delete epoll state from connection events
* @c: Execution context
* @conn: Connection pointer
*
* Return: 0 on success, negative error code on failure (not on deletion)
*/
static int tcp_epoll_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
int m = conn->in_epoll ? EPOLL_CTL_MOD : EPOLL_CTL_ADD;
union epoll_ref ref = { .type = EPOLL_TYPE_TCP, .fd = conn->sock,
.flowside = FLOW_SIDX(conn, !TAPSIDE(conn)), };
struct epoll_event ev = { .data.u64 = ref.u64 };
if (conn->events == CLOSED) {
if (conn->in_epoll)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->sock, &ev);
if (conn->timer != -1)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->timer, &ev);
return 0;
}
ev.events = tcp_conn_epoll_events(conn->events, conn->flags);
if (epoll_ctl(c->epollfd, m, conn->sock, &ev))
return -errno;
conn->in_epoll = true;
if (conn->timer != -1) {
union epoll_ref ref_t = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev_t = { .data.u64 = ref_t.u64,
.events = EPOLLIN | EPOLLET };
if (epoll_ctl(c->epollfd, EPOLL_CTL_MOD, conn->timer, &ev_t))
return -errno;
}
return 0;
}
/**
* tcp_timer_ctl() - Set timerfd based on flags/events, create timerfd if needed
* @c: Execution context
* @conn: Connection pointer
*
* #syscalls timerfd_create timerfd_settime
*/
static void tcp_timer_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
struct itimerspec it = { { 0 }, { 0 } };
if (conn->events == CLOSED)
return;
if (conn->timer == -1) {
union epoll_ref ref = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev = { .data.u64 = ref.u64,
.events = EPOLLIN | EPOLLET };
int fd;
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd == -1 || fd > FD_REF_MAX) {
flow_dbg(conn, "failed to get timer: %s",
strerror_(errno));
if (fd > -1)
close(fd);
conn->timer = -1;
return;
}
conn->timer = fd;
if (epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->timer, &ev)) {
flow_dbg(conn, "failed to add timer: %s",
strerror_(errno));
close(conn->timer);
conn->timer = -1;
return;
}
}
if (conn->flags & ACK_TO_TAP_DUE) {
it.it_value.tv_nsec = (long)ACK_INTERVAL * 1000 * 1000;
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED))
it.it_value.tv_sec = SYN_TIMEOUT;
else
it.it_value.tv_sec = ACK_TIMEOUT;
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
it.it_value.tv_sec = FIN_TIMEOUT;
} else {
it.it_value.tv_sec = ACT_TIMEOUT;
}
flow_dbg(conn, "timer expires in %llu.%03llus",
(unsigned long long)it.it_value.tv_sec,
(unsigned long long)it.it_value.tv_nsec / 1000 / 1000);
if (timerfd_settime(conn->timer, 0, &it, NULL))
flow_err(conn, "failed to set timer: %s", strerror_(errno));
}
/**
* conn_flag_do() - Set/unset given flag, log, update epoll on STALLED flag
* @c: Execution context
* @conn: Connection pointer
* @flag: Flag to set, or ~flag to unset
*/
void conn_flag_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long flag)
{
if (flag & (flag - 1)) {
int flag_index = fls(~flag);
if (!(conn->flags & ~flag))
return;
conn->flags &= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s dropped", tcp_flag_str[flag_index]);
} else {
int flag_index = fls(flag);
if (conn->flags & flag) {
/* Special case: setting ACK_FROM_TAP_DUE on a
* connection where it's already set is used to
* re-schedule the existing timer.
* TODO: define clearer semantics for timer-related
* flags and factor this into the logic below.
*/
if (flag == ACK_FROM_TAP_DUE)
tcp_timer_ctl(c, conn);
return;
}
conn->flags |= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s", tcp_flag_str[flag_index]);
}
if (flag == STALLED || flag == ~STALLED)
tcp_epoll_ctl(c, conn);
if (flag == ACK_FROM_TAP_DUE || flag == ACK_TO_TAP_DUE ||
(flag == ~ACK_FROM_TAP_DUE && (conn->flags & ACK_TO_TAP_DUE)) ||
(flag == ~ACK_TO_TAP_DUE && (conn->flags & ACK_FROM_TAP_DUE)))
tcp_timer_ctl(c, conn);
}
/**
* conn_event_do() - Set and log connection events, update epoll state
* @c: Execution context
* @conn: Connection pointer
* @event: Connection event
*/
void conn_event_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long event)
{
int prev, new, num = fls(event);
if (conn->events & event)
return;
prev = fls(conn->events);
if (conn->flags & ACTIVE_CLOSE)
prev += 5;
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED))
prev++; /* i.e. SOCK_FIN_RCVD, not TAP_SYN_ACK_SENT */
if (event == CLOSED || (event & CONN_STATE_BITS))
conn->events = event;
else
conn->events |= event;
new = fls(conn->events);
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED)) {
num++;
new++;
}
if (conn->flags & ACTIVE_CLOSE)
new += 5;
if (prev != new)
flow_dbg(conn, "%s: %s -> %s",
num == -1 ? "CLOSED" : tcp_event_str[num],
prev == -1 ? "CLOSED" : tcp_state_str[prev],
(new == -1 || num == -1) ? "CLOSED" : tcp_state_str[new]);
else
flow_dbg(conn, "%s",
num == -1 ? "CLOSED" : tcp_event_str[num]);
if (event == CLOSED)
flow_hash_remove(c, TAP_SIDX(conn));
else if ((event == TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_RCVD))
conn_flag(c, conn, ACTIVE_CLOSE);
else
tcp_epoll_ctl(c, conn);
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
tcp_timer_ctl(c, conn);
}
/**
* tcp_rtt_dst_low() - Check if low RTT was seen for connection endpoint
* @conn: Connection pointer
*
* Return: 1 if destination is in low RTT table, 0 otherwise
*/
static int tcp_rtt_dst_low(const struct tcp_tap_conn *conn)
{
const struct flowside *tapside = TAPFLOW(conn);
int i;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++)
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return 1;
return 0;
}
/**
* tcp_rtt_dst_check() - Check tcpi_min_rtt, insert endpoint in table if low
* @conn: Connection pointer
* @tinfo: Pointer to struct tcp_info for socket
*/
static void tcp_rtt_dst_check(const struct tcp_tap_conn *conn,
const struct tcp_info_linux *tinfo)
{
const struct flowside *tapside = TAPFLOW(conn);
int i, hole = -1;
if (!min_rtt_cap ||
(int)tinfo->tcpi_min_rtt > LOW_RTT_THRESHOLD)
return;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++) {
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return;
if (hole == -1 && IN6_IS_ADDR_UNSPECIFIED(low_rtt_dst + i))
hole = i;
}
/* Keep gcc 12 happy: this won't actually happen because the table is
* guaranteed to have a hole, see the second memcpy() below.
*/
if (hole == -1)
return;
low_rtt_dst[hole++] = tapside->oaddr;
if (hole == LOW_RTT_TABLE_SIZE)
hole = 0;
inany_from_af(low_rtt_dst + hole, AF_INET6, &in6addr_any);
}
/**
* tcp_get_sndbuf() - Get, scale SO_SNDBUF between thresholds (1 to 0.5 usage)
* @conn: Connection pointer
*/
static void tcp_get_sndbuf(struct tcp_tap_conn *conn)
{
int s = conn->sock, sndbuf;
socklen_t sl;
uint64_t v;
sl = sizeof(sndbuf);
if (getsockopt(s, SOL_SOCKET, SO_SNDBUF, &sndbuf, &sl)) {
SNDBUF_SET(conn, WINDOW_DEFAULT);
return;
}
v = sndbuf;
if (v >= SNDBUF_BIG)
v /= 2;
else if (v > SNDBUF_SMALL)
v -= v * (v - SNDBUF_SMALL) / (SNDBUF_BIG - SNDBUF_SMALL) / 2;
SNDBUF_SET(conn, MIN(INT_MAX, v));
}
/**
* tcp_sock_set_bufsize() - Set SO_RCVBUF and SO_SNDBUF to maximum values
* @s: Socket, can be -1 to avoid check in the caller
*/
static void tcp_sock_set_bufsize(const struct ctx *c, int s)
{
int v = INT_MAX / 2; /* Kernel clamps and rounds, no need to check */
if (s == -1)
return;
if (!c->low_rmem && setsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_RCVBUF to %i", v);
if (!c->low_wmem && setsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_SNDBUF to %i", v);
}
/**
* tcp_update_csum() - Calculate TCP checksum
* @psum: Unfolded partial checksum of the IPv4 or IPv6 pseudo-header
* @th: TCP header (updated)
* @payload: TCP payload
*/
void tcp_update_csum(uint32_t psum, struct tcphdr *th, struct iov_tail *payload)
{
th->check = 0;
psum = csum_unfolded(th, sizeof(*th), psum);
th->check = csum_iov_tail(payload, psum);
}
/**
* tcp_opt_get() - Get option, and value if any, from TCP header
* @opts: Pointer to start of TCP options in header
* @len: Length of buffer, excluding TCP header -- NOT checked here!
* @type_find: Option type to look for
* @optlen_set: Optional, filled with option length if passed
* @value_set: Optional, set to start of option value if passed
*
* Return: option value, meaningful for up to 4 bytes, -1 if not found
*/
static int tcp_opt_get(const char *opts, size_t len, uint8_t type_find,
uint8_t *optlen_set, const char **value_set)
{
uint8_t type, optlen;
if (!opts || !len)
return -1;
for (; len >= 2; opts += optlen, len -= optlen) {
switch (*opts) {
case OPT_EOL:
return -1;
case OPT_NOP:
optlen = 1;
break;
default:
type = *(opts++);
if (*(uint8_t *)opts < 2 || *(uint8_t *)opts > len)
return -1;
optlen = *(opts++) - 2;
len -= 2;
if (type != type_find)
break;
if (optlen_set)
*optlen_set = optlen;
if (value_set)
*value_set = opts;
switch (optlen) {
case 0:
return 0;
case 1:
return *opts;
case 2:
return ntohs(*(uint16_t *)opts);
default:
return ntohl(*(uint32_t *)opts);
}
}
}
return -1;
}
/**
* tcp_flow_defer() - Deferred per-flow handling (clean up closed connections)
* @conn: Connection to handle
*
* Return: true if the connection is ready to free, false otherwise
*/
bool tcp_flow_defer(const struct tcp_tap_conn *conn)
{
if (conn->events != CLOSED)
return false;
close(conn->sock);
if (conn->timer != -1)
close(conn->timer);
return true;
}
/**
* tcp_defer_handler() - Handler for TCP deferred tasks
* @c: Execution context
*/
/* cppcheck-suppress [constParameterPointer, unmatchedSuppression] */
void tcp_defer_handler(struct ctx *c)
{
tcp_payload_flush(c);
}
/**
* tcp_fill_header() - Fill the TCP header fields for a given TCP segment.
*
* @th: Pointer to the TCP header structure
* @conn: Pointer to the TCP connection structure
* @seq: Sequence number
*/
static void tcp_fill_header(struct tcphdr *th,
const struct tcp_tap_conn *conn, uint32_t seq)
{
const struct flowside *tapside = TAPFLOW(conn);
th->source = htons(tapside->oport);
th->dest = htons(tapside->eport);
th->seq = htonl(seq);
th->ack_seq = htonl(conn->seq_ack_to_tap);
if (conn->events & ESTABLISHED) {
th->window = htons(conn->wnd_to_tap);
} else {
unsigned wnd = conn->wnd_to_tap << conn->ws_to_tap;
th->window = htons(MIN(wnd, USHRT_MAX));
}
}
/**
* tcp_fill_headers() - Fill 802.3, IP, TCP headers
* @conn: Connection pointer
* @taph: tap backend specific header
* @ip4h: Pointer to IPv4 header, or NULL
* @ip6h: Pointer to IPv6 header, or NULL
* @th: Pointer to TCP header
* @payload: TCP payload
* @ip4_check: IPv4 checksum, if already known
* @seq: Sequence number for this segment
* @no_tcp_csum: Do not set TCP checksum
*/
void tcp_fill_headers(const struct tcp_tap_conn *conn,
struct tap_hdr *taph,
struct iphdr *ip4h, struct ipv6hdr *ip6h,
struct tcphdr *th, struct iov_tail *payload,
const uint16_t *ip4_check, uint32_t seq, bool no_tcp_csum)
{
const struct flowside *tapside = TAPFLOW(conn);
size_t l4len = iov_tail_size(payload) + sizeof(*th);
size_t l3len = l4len;
uint32_t psum = 0;
if (ip4h) {
const struct in_addr *src4 = inany_v4(&tapside->oaddr);
const struct in_addr *dst4 = inany_v4(&tapside->eaddr);
ASSERT(src4 && dst4);
l3len += + sizeof(*ip4h);
ip4h->tot_len = htons(l3len);
ip4h->saddr = src4->s_addr;
ip4h->daddr = dst4->s_addr;
if (ip4_check)
ip4h->check = *ip4_check;
else
ip4h->check = csum_ip4_header(l3len, IPPROTO_TCP,
*src4, *dst4);
if (!no_tcp_csum) {
psum = proto_ipv4_header_psum(l4len, IPPROTO_TCP,
*src4, *dst4);
}
}
if (ip6h) {
l3len += sizeof(*ip6h);
ip6h->payload_len = htons(l4len);
ip6h->saddr = tapside->oaddr.a6;
ip6h->daddr = tapside->eaddr.a6;
ip6h->hop_limit = 255;
ip6h->version = 6;
ip6h->nexthdr = IPPROTO_TCP;
ip6h->flow_lbl[0] = (conn->sock >> 16) & 0xf;
ip6h->flow_lbl[1] = (conn->sock >> 8) & 0xff;
ip6h->flow_lbl[2] = (conn->sock >> 0) & 0xff;
if (!no_tcp_csum) {
psum = proto_ipv6_header_psum(l4len, IPPROTO_TCP,
&ip6h->saddr,
&ip6h->daddr);
}
}
tcp_fill_header(th, conn, seq);
if (no_tcp_csum)
th->check = 0;
else
tcp_update_csum(psum, th, payload);
tap_hdr_update(taph, l3len + sizeof(struct ethhdr));
}
/**
* tcp_update_seqack_wnd() - Update ACK sequence and window to guest/tap
* @c: Execution context
* @conn: Connection pointer
* @force_seq: Force ACK sequence to latest segment, instead of checking socket
* @tinfo: tcp_info from kernel, can be NULL if not pre-fetched
*
* Return: 1 if sequence or window were updated, 0 otherwise
*/
int tcp_update_seqack_wnd(const struct ctx *c, struct tcp_tap_conn *conn,
bool force_seq, struct tcp_info_linux *tinfo)
{
uint32_t prev_wnd_to_tap = conn->wnd_to_tap << conn->ws_to_tap;
uint32_t prev_ack_to_tap = conn->seq_ack_to_tap;
/* cppcheck-suppress [ctunullpointer, unmatchedSuppression] */
socklen_t sl = sizeof(*tinfo);
struct tcp_info_linux tinfo_new;
uint32_t new_wnd_to_tap = prev_wnd_to_tap;
int s = conn->sock;
if (!bytes_acked_cap) {
conn->seq_ack_to_tap = conn->seq_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
} else {
if ((unsigned)SNDBUF_GET(conn) < SNDBUF_SMALL ||
tcp_rtt_dst_low(conn) || CONN_IS_CLOSING(conn) ||
(conn->flags & LOCAL) || force_seq) {
conn->seq_ack_to_tap = conn->seq_from_tap;
} else if (conn->seq_ack_to_tap != conn->seq_from_tap) {
if (!tinfo) {
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl))
return 0;
}
conn->seq_ack_to_tap = tinfo->tcpi_bytes_acked +
conn->seq_init_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
}
}
if (!snd_wnd_cap) {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN(SNDBUF_GET(conn), MAX_WINDOW);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap,
USHRT_MAX);
goto out;
}
if (!tinfo) {
if (prev_wnd_to_tap > WINDOW_DEFAULT) {
goto out;
}
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl)) {
goto out;
}
}
if ((conn->flags & LOCAL) || tcp_rtt_dst_low(conn)) {
new_wnd_to_tap = tinfo->tcpi_snd_wnd;
} else {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN((int)tinfo->tcpi_snd_wnd,
SNDBUF_GET(conn));
}
new_wnd_to_tap = MIN(new_wnd_to_tap, MAX_WINDOW);
if (!(conn->events & ESTABLISHED))
new_wnd_to_tap = MAX(new_wnd_to_tap, WINDOW_DEFAULT);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap, USHRT_MAX);
/* Certain cppcheck versions, e.g. 2.12.0 have a bug where they think
* the MIN() above restricts conn->wnd_to_tap to be zero. That's
* clearly incorrect, but until the bug is fixed, work around it.
* https://bugzilla.redhat.com/show_bug.cgi?id=2240705
* https://sourceforge.net/p/cppcheck/discussion/general/thread/f5b1a00646/
*/
/* cppcheck-suppress [knownConditionTrueFalse, unmatchedSuppression] */
if (!conn->wnd_to_tap)
conn_flag(c, conn, ACK_TO_TAP_DUE);
out:
return new_wnd_to_tap != prev_wnd_to_tap ||
conn->seq_ack_to_tap != prev_ack_to_tap;
}
/**
* tcp_update_seqack_from_tap() - ACK number from tap and related flags/counters
* @c: Execution context
* @conn: Connection pointer
* @seq Current ACK sequence, host order
*/
static void tcp_update_seqack_from_tap(const struct ctx *c,
struct tcp_tap_conn *conn, uint32_t seq)
{
if (seq == conn->seq_to_tap)
conn_flag(c, conn, ~ACK_FROM_TAP_DUE);
if (SEQ_GT(seq, conn->seq_ack_from_tap)) {
/* Forward progress, but more data to acknowledge: reschedule */
if (SEQ_LT(seq, conn->seq_to_tap))
conn_flag(c, conn, ACK_FROM_TAP_DUE);
conn->retrans = 0;
conn->seq_ack_from_tap = seq;
}
}
/**
* tcp_prepare_flags() - Prepare header for flags-only segment (no payload)
* @c: Execution context
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
* @th: TCP header to update
* @data: buffer to store TCP option
* @optlen: size of the TCP option buffer (output parameter)
*
* Return: < 0 error code on connection reset,
* 0 if there is no flag to send
* 1 otherwise
*/
int tcp_prepare_flags(const struct ctx *c, struct tcp_tap_conn *conn,
int flags, struct tcphdr *th, struct tcp_syn_opts *opts,
size_t *optlen)
{
struct tcp_info_linux tinfo = { 0 };
socklen_t sl = sizeof(tinfo);
int s = conn->sock;
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap) &&
!flags && conn->wnd_to_tap) {
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
return 0;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
conn_event(c, conn, CLOSED);
return -ECONNRESET;
}
if (!(conn->flags & LOCAL))
tcp_rtt_dst_check(conn, &tinfo);
if (!tcp_update_seqack_wnd(c, conn, !!flags, &tinfo) && !flags)
return 0;
*optlen = 0;
if (flags & SYN) {
int mss;
if (c->mtu == -1) {
mss = tinfo.tcpi_snd_mss;
} else {
mss = c->mtu - sizeof(struct tcphdr);
if (CONN_V4(conn))
mss -= sizeof(struct iphdr);
else
mss -= sizeof(struct ipv6hdr);
if (c->low_wmem &&
!(conn->flags & LOCAL) && !tcp_rtt_dst_low(conn))
mss = MIN(mss, PAGE_SIZE);
else if (mss > PAGE_SIZE)
mss = ROUND_DOWN(mss, PAGE_SIZE);
}
conn->ws_to_tap = MIN(MAX_WS, tinfo.tcpi_snd_wscale);
*opts = TCP_SYN_OPTS(mss, conn->ws_to_tap);
*optlen = sizeof(*opts);
} else if (!(flags & RST)) {
flags |= ACK;
}
th->doff = (sizeof(*th) + *optlen) / 4;
th->ack = !!(flags & ACK);
th->rst = !!(flags & RST);
th->syn = !!(flags & SYN);
th->fin = !!(flags & FIN);
if (th->ack) {
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap))
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
else
conn_flag(c, conn, ACK_TO_TAP_DUE);
}
if (th->fin)
conn_flag(c, conn, ACK_FROM_TAP_DUE);
/* RFC 793, 3.1: "[...] and the first data octet is ISN+1." */
if (th->fin || th->syn)
conn->seq_to_tap++;
return 1;
}
/**
* tcp_send_flag() - Send segment with flags to tap (no payload)
* @c: Execution context
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
*
* Return: negative error code on connection reset, 0 otherwise
*/
static int tcp_send_flag(const struct ctx *c, struct tcp_tap_conn *conn,
int flags)
{
if (c->mode == MODE_VU)
return tcp_vu_send_flag(c, conn, flags);
return tcp_buf_send_flag(c, conn, flags);
}
/**
* tcp_rst_do() - Reset a tap connection: send RST segment to tap, close socket
* @c: Execution context
* @conn: Connection pointer
*/
void tcp_rst_do(const struct ctx *c, struct tcp_tap_conn *conn)
{
if (conn->events == CLOSED)
return;
if (!tcp_send_flag(c, conn, RST))
conn_event(c, conn, CLOSED);
}
/**
* tcp_get_tap_ws() - Get Window Scaling option for connection from tap/guest
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_get_tap_ws(struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
{
int ws = tcp_opt_get(opts, optlen, OPT_WS, NULL, NULL);
if (ws >= 0 && ws <= TCP_WS_MAX)
conn->ws_from_tap = ws;
else
conn->ws_from_tap = 0;
}
/**
* tcp_tap_window_update() - Process an updated window from tap side
* @conn: Connection pointer
* @window: Window value, host order, unscaled
*/
static void tcp_tap_window_update(struct tcp_tap_conn *conn, unsigned wnd)
{
wnd = MIN(MAX_WINDOW, wnd << conn->ws_from_tap);
/* Work-around for bug introduced in peer kernel code, commit
* e2142825c120 ("net: tcp: send zero-window ACK when no memory").
* We don't update if window shrank to zero.
*/
if (!wnd && SEQ_LT(conn->seq_ack_from_tap, conn->seq_to_tap))
return;
conn->wnd_from_tap = MIN(wnd >> conn->ws_from_tap, USHRT_MAX);
/* FIXME: reflect the tap-side receiver's window back to the sock-side
* sender by adjusting SO_RCVBUF? */
}
/**
* tcp_init_seq() - Calculate initial sequence number according to RFC 6528
* @hash: Hash of connection details
* @now: Current timestamp
*/
static uint32_t tcp_init_seq(uint64_t hash, const struct timespec *now)
{
/* 32ns ticks, overflows 32 bits every 137s */
uint32_t ns = (now->tv_sec * 1000000000 + now->tv_nsec) >> 5;
return ((uint32_t)(hash >> 32) ^ (uint32_t)hash) + ns;
}
/**
* tcp_conn_pool_sock() - Get socket for new connection from pre-opened pool
* @pool: Pool of pre-opened sockets
*
* Return: socket number if available, negative code if pool is empty
*/
int tcp_conn_pool_sock(int pool[])
{
int s = -1, i;
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
SWAP(s, pool[i]);
if (s >= 0)
return s;
}
return -1;
}
/**
* tcp_conn_new_sock() - Open and prepare new socket for connection
* @c: Execution context
* @af: Address family
*
* Return: socket number on success, negative code if socket creation failed
*/
static int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
{
int s;
s = socket(af, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_TCP);
if (s > FD_REF_MAX) {
close(s);
return -EIO;
}
if (s < 0)
return -errno;
tcp_sock_set_bufsize(c, s);
return s;
}
/**
* tcp_conn_sock() - Obtain a connectable socket in the host/init namespace
* @c: Execution context
* @af: Address family (AF_INET or AF_INET6)
*
* Return: Socket fd on success, -errno on failure
*/
int tcp_conn_sock(const struct ctx *c, sa_family_t af)
{
int *pool = af == AF_INET6 ? init_sock_pool6 : init_sock_pool4;
int s;
if ((s = tcp_conn_pool_sock(pool)) >= 0)
return s;
/* If the pool is empty we just open a new one without refilling the
* pool to keep latency down.
*/
if ((s = tcp_conn_new_sock(c, af)) >= 0)
return s;
err("TCP: Unable to open socket for new connection: %s",
strerror_(-s));
return -1;
}
/**
* tcp_conn_tap_mss() - Get MSS value advertised by tap/guest
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*
* Return: clamped MSS value
*/
static uint16_t tcp_conn_tap_mss(const struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
{
unsigned int mss;
int ret;
if ((ret = tcp_opt_get(opts, optlen, OPT_MSS, NULL, NULL)) < 0)
mss = MSS_DEFAULT;
else
mss = ret;
if (CONN_V4(conn))
mss = MIN(MSS4, mss);
else
mss = MIN(MSS6, mss);
return MIN(mss, USHRT_MAX);
}
/**
* tcp_bind_outbound() - Bind socket to outbound address and interface if given
* @c: Execution context
* @conn: Connection entry for socket to bind
* @s: Outbound TCP socket
*/
static void tcp_bind_outbound(const struct ctx *c,
const struct tcp_tap_conn *conn, int s)
{
const struct flowside *tgt = &conn->f.side[TGTSIDE];
union sockaddr_inany bind_sa;
socklen_t sl;
pif_sockaddr(c, &bind_sa, &sl, PIF_HOST, &tgt->oaddr, tgt->oport);
if (!inany_is_unspecified(&tgt->oaddr) || tgt->oport) {
if (bind(s, &bind_sa.sa, sl)) {
char sstr[INANY_ADDRSTRLEN];
flow_dbg(conn,
"Can't bind TCP outbound socket to %s:%hu: %s",
inany_ntop(&tgt->oaddr, sstr, sizeof(sstr)),
tgt->oport, strerror_(errno));
}
}
if (bind_sa.sa_family == AF_INET) {
if (*c->ip4.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip4.ifname_out,
strlen(c->ip4.ifname_out))) {
flow_dbg(conn, "Can't bind IPv4 TCP socket to"
" interface %s: %s", c->ip4.ifname_out,
strerror_(errno));
}
}
} else if (bind_sa.sa_family == AF_INET6) {
if (*c->ip6.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip6.ifname_out,
strlen(c->ip6.ifname_out))) {
flow_dbg(conn, "Can't bind IPv6 TCP socket to"
" interface %s: %s", c->ip6.ifname_out,
strerror_(errno));
}
}
}
}
/**
* tcp_conn_from_tap() - Handle connection request (SYN segment) from tap
* @c: Execution context
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address, pointer to in_addr or in6_addr
* @daddr: Destination address, pointer to in_addr or in6_addr
* @th: TCP header from tap: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
* @now: Current timestamp
*/
static void tcp_conn_from_tap(const struct ctx *c, sa_family_t af,
const void *saddr, const void *daddr,
const struct tcphdr *th, const char *opts,
size_t optlen, const struct timespec *now)
{
in_port_t srcport = ntohs(th->source);
in_port_t dstport = ntohs(th->dest);
const struct flowside *ini, *tgt;
struct tcp_tap_conn *conn;
union sockaddr_inany sa;
union flow *flow;
int s = -1, mss;
uint64_t hash;
socklen_t sl;
if (!(flow = flow_alloc()))
return;
ini = flow_initiate_af(flow, PIF_TAP,
af, saddr, srcport, daddr, dstport);
if (!(tgt = flow_target(c, flow, IPPROTO_TCP)))
goto cancel;
if (flow->f.pif[TGTSIDE] != PIF_HOST) {
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0 ||
!inany_is_unicast(&ini->oaddr) || ini->oport == 0) {
char sstr[INANY_ADDRSTRLEN], dstr[INANY_ADDRSTRLEN];
debug("Invalid endpoint in TCP SYN: %s:%hu -> %s:%hu",
inany_ntop(&ini->eaddr, sstr, sizeof(sstr)), ini->eport,
inany_ntop(&ini->oaddr, dstr, sizeof(dstr)), ini->oport);
goto cancel;
}
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
pif_sockaddr(c, &sa, &sl, PIF_HOST, &tgt->eaddr, tgt->eport);
/* Use bind() to check if the target address is local (EADDRINUSE or
* similar) and already bound, and set the LOCAL flag in that case.
*
* If bind() succeeds, in general, we could infer that nobody (else) is
* listening on that address and port and reset the connection attempt
* early, but we can't rely on that if non-local binds are enabled,
* because bind() would succeed for any non-local address we can reach.
*
* So, if bind() succeeds, close the socket, get a new one, and proceed.
*/
if (bind(s, &sa.sa, sl)) {
if (errno != EADDRNOTAVAIL && errno != EACCES)
conn_flag(c, conn, LOCAL);
} else {
/* Not a local, bound destination, inconclusive test */
close(s);
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
}
conn->sock = s;
conn->timer = -1;
conn_event(c, conn, TAP_SYN_RCVD);
conn->wnd_to_tap = WINDOW_DEFAULT;
mss = tcp_conn_tap_mss(conn, opts, optlen);
if (setsockopt(s, SOL_TCP, TCP_MAXSEG, &mss, sizeof(mss)))
flow_trace(conn, "failed to set TCP_MAXSEG on socket %i", s);
MSS_SET(conn, mss);
tcp_get_tap_ws(conn, opts, optlen);
/* RFC 7323, 2.2: first value is not scaled. Also, don't clamp yet, to
* avoid getting a zero scale just because we set a small window now.
*/
if (!(conn->wnd_from_tap = (htons(th->window) >> conn->ws_from_tap)))
conn->wnd_from_tap = 1;
conn->seq_init_from_tap = ntohl(th->seq);
conn->seq_from_tap = conn->seq_init_from_tap + 1;
conn->seq_ack_to_tap = conn->seq_from_tap;
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
conn->seq_ack_from_tap = conn->seq_to_tap;
tcp_bind_outbound(c, conn, s);
if (connect(s, &sa.sa, sl)) {
if (errno != EINPROGRESS) {
tcp_rst(c, conn);
goto cancel;
}
tcp_get_sndbuf(conn);
} else {
tcp_get_sndbuf(conn);
if (tcp_send_flag(c, conn, SYN | ACK))
goto cancel;
conn_event(c, conn, TAP_SYN_ACK_SENT);
}
tcp_epoll_ctl(c, conn);
FLOW_ACTIVATE(conn);
return;
cancel:
if (s >= 0)
close(s);
flow_alloc_cancel(flow);
}
/**
* tcp_sock_consume() - Consume (discard) data from buffer
* @conn: Connection pointer
* @ack_seq: ACK sequence, host order
*
* Return: 0 on success, negative error code from recv() on failure
*/
#ifdef VALGRIND
/* valgrind doesn't realise that passing a NULL buffer to recv() is ok if using
* MSG_TRUNC. We have a suppression for this in the tests, but it relies on
* valgrind being able to see the tcp_sock_consume() stack frame, which it won't
* if this gets inlined. This has a single caller making it a likely inlining
* candidate, and certain compiler versions will do so even at -O0.
*/
__attribute__((noinline))
#endif /* VALGRIND */
static int tcp_sock_consume(const struct tcp_tap_conn *conn, uint32_t ack_seq)
{
/* Simply ignore out-of-order ACKs: we already consumed the data we
* needed from the buffer, and we won't rewind back to a lower ACK
* sequence.
*/
if (SEQ_LE(ack_seq, conn->seq_ack_from_tap))
return 0;
/* cppcheck-suppress [nullPointer, unmatchedSuppression] */
if (recv(conn->sock, NULL, ack_seq - conn->seq_ack_from_tap,
MSG_DONTWAIT | MSG_TRUNC) < 0)
return -errno;
return 0;
}
/**
* tcp_data_from_sock() - Handle new data from socket, queue to tap, in window
* @c: Execution context
* @conn: Connection pointer
*
* Return: negative on connection reset, 0 otherwise
*
* #syscalls recvmsg
*/
static int tcp_data_from_sock(const struct ctx *c, struct tcp_tap_conn *conn)
{
if (c->mode == MODE_VU)
return tcp_vu_data_from_sock(c, conn);
return tcp_buf_data_from_sock(c, conn);
}
/**
* tcp_data_from_tap() - tap/guest data for established connection
* @c: Execution context
* @conn: Connection pointer
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first data packet in pool
*
* #syscalls sendmsg
*
* Return: count of consumed packets
*/
static int tcp_data_from_tap(const struct ctx *c, struct tcp_tap_conn *conn,
const struct pool *p, int idx)
{
int i, iov_i, ack = 0, fin = 0, retr = 0, keep = -1, partial_send = 0;
uint16_t max_ack_seq_wnd = conn->wnd_from_tap;
uint32_t max_ack_seq = conn->seq_ack_from_tap;
uint32_t seq_from_tap = conn->seq_from_tap;
struct msghdr mh = { .msg_iov = tcp_iov };
size_t len;
ssize_t n;
if (conn->events == CLOSED)
return p->count - idx;
ASSERT(conn->events & ESTABLISHED);
for (i = idx, iov_i = 0; i < (int)p->count; i++) {
uint32_t seq, seq_offset, ack_seq;
const struct tcphdr *th;
char *data;
size_t off;
th = packet_get(p, i, 0, sizeof(*th), &len);
if (!th)
return -1;
len += sizeof(*th);
off = th->doff * 4UL;
if (off < sizeof(*th) || off > len)
return -1;
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
}
len -= off;
data = packet_get(p, i, off, len, NULL);
if (!data)
continue;
seq = ntohl(th->seq);
if (SEQ_LT(seq, conn->seq_from_tap) && len <= 1) {
flow_trace(conn,
"keep-alive sequence: %u, previous: %u",
seq, conn->seq_from_tap);
tcp_send_flag(c, conn, ACK);
tcp_timer_ctl(c, conn);
if (p->count == 1)
return 1;
continue;
}
ack_seq = ntohl(th->ack_seq);
if (th->ack) {
ack = 1;
if (SEQ_GE(ack_seq, conn->seq_ack_from_tap) &&
SEQ_GE(ack_seq, max_ack_seq)) {
/* Fast re-transmit */
retr = !len && !th->fin &&
ack_seq == max_ack_seq &&
ntohs(th->window) == max_ack_seq_wnd;
max_ack_seq_wnd = ntohs(th->window);
max_ack_seq = ack_seq;
}
}
if (th->fin)
fin = 1;
if (!len)
continue;
seq_offset = seq_from_tap - seq;
/* Use data from this buffer only in these two cases:
*
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '----' <-- offset ' <-- offset
* ^ seq ^ seq
* (offset >= 0, seq + len > seq_from_tap)
*
* discard in these two cases:
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '--------' <-- offset '-----| <- offset
* ^ seq ^ seq
* (offset >= 0, seq + len <= seq_from_tap)
*
* keep, look for another buffer, then go back, in this case:
* , seq_from_tap
* |--------| <-- len
* '===' <-- offset
* ^ seq
* (offset < 0)
*/
if (SEQ_GE(seq_offset, 0) && SEQ_LE(seq + len, seq_from_tap))
continue;
if (SEQ_LT(seq_offset, 0)) {
if (keep == -1)
keep = i;
continue;
}
tcp_iov[iov_i].iov_base = data + seq_offset;
tcp_iov[iov_i].iov_len = len - seq_offset;
seq_from_tap += tcp_iov[iov_i].iov_len;
iov_i++;
if (keep == i)
keep = -1;
if (keep != -1)
i = keep - 1;
}
/* On socket flush failure, pretend there was no ACK, try again later */
if (ack && !tcp_sock_consume(conn, max_ack_seq))
tcp_update_seqack_from_tap(c, conn, max_ack_seq);
tcp_tap_window_update(conn, max_ack_seq_wnd);
if (retr) {
flow_trace(conn,
"fast re-transmit, ACK: %u, previous sequence: %u",
max_ack_seq, conn->seq_to_tap);
conn->seq_to_tap = max_ack_seq;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return -1;
}
tcp_data_from_sock(c, conn);
}
if (!iov_i)
goto out;
mh.msg_iovlen = iov_i;
eintr:
n = sendmsg(conn->sock, &mh, MSG_DONTWAIT | MSG_NOSIGNAL);
if (n < 0) {
if (errno == EPIPE) {
/* Here's the wrap, said the tap.
* In my pocket, said the socket.
* Then swiftly looked away and left.
*/
conn->seq_from_tap = seq_from_tap;
tcp_send_flag(c, conn, ACK);
}
if (errno == EINTR)
goto eintr;
if (errno == EAGAIN || errno == EWOULDBLOCK) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
return p->count - idx;
}
return -1;
}
if (n < (int)(seq_from_tap - conn->seq_from_tap)) {
partial_send = 1;
conn->seq_from_tap += n;
tcp_send_flag(c, conn, ACK_IF_NEEDED);
} else {
conn->seq_from_tap += n;
}
out:
if (keep != -1) {
/* We use an 8-bit approximation here: the associated risk is
* that we skip a duplicate ACK on 8-bit sequence number
* collision. Fast retransmit is a SHOULD in RFC 5681, 3.2.
*/
if (conn->seq_dup_ack_approx != (conn->seq_from_tap & 0xff)) {
conn->seq_dup_ack_approx = conn->seq_from_tap & 0xff;
tcp_send_flag(c, conn, ACK | DUP_ACK);
}
return p->count - idx;
}
if (ack && conn->events & TAP_FIN_SENT &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, TAP_FIN_ACKED);
if (fin && !partial_send) {
conn->seq_from_tap++;
conn_event(c, conn, TAP_FIN_RCVD);
} else {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
}
return p->count - idx;
}
/**
* tcp_conn_from_sock_finish() - Complete connection setup after connect()
* @c: Execution context
* @conn: Connection pointer
* @th: TCP header of SYN, ACK segment: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_conn_from_sock_finish(const struct ctx *c,
struct tcp_tap_conn *conn,
const struct tcphdr *th,
const char *opts, size_t optlen)
{
tcp_tap_window_update(conn, ntohs(th->window));
tcp_get_tap_ws(conn, opts, optlen);
/* First value is not scaled */
if (!(conn->wnd_from_tap >>= conn->ws_from_tap))
conn->wnd_from_tap = 1;
MSS_SET(conn, tcp_conn_tap_mss(conn, opts, optlen));
conn->seq_init_from_tap = ntohl(th->seq) + 1;
conn->seq_from_tap = conn->seq_init_from_tap;
conn->seq_ack_to_tap = conn->seq_from_tap;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return;
}
tcp_send_flag(c, conn, ACK);
/* The client might have sent data already, which we didn't
* dequeue waiting for SYN,ACK from tap -- check now.
*/
tcp_data_from_sock(c, conn);
}
/**
* tcp_tap_handler() - Handle packets from tap and state transitions
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first packet in pool to process
* @now: Current timestamp
*
* Return: count of consumed packets
*/
int tcp_tap_handler(const struct ctx *c, uint8_t pif, sa_family_t af,
const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
{
struct tcp_tap_conn *conn;
const struct tcphdr *th;
size_t optlen, len;
const char *opts;
union flow *flow;
flow_sidx_t sidx;
int ack_due = 0;
int count;
(void)pif;
th = packet_get(p, idx, 0, sizeof(*th), &len);
if (!th)
return 1;
len += sizeof(*th);
optlen = th->doff * 4UL - sizeof(*th);
/* Static checkers might fail to see this: */
optlen = MIN(optlen, ((1UL << 4) /* from doff width */ - 6) * 4UL);
opts = packet_get(p, idx, sizeof(*th), optlen, NULL);
sidx = flow_lookup_af(c, IPPROTO_TCP, PIF_TAP, af, saddr, daddr,
ntohs(th->source), ntohs(th->dest));
flow = flow_at_sidx(sidx);
/* New connection from tap */
if (!flow) {
if (opts && th->syn && !th->ack)
tcp_conn_from_tap(c, af, saddr, daddr, th,
opts, optlen, now);
return 1;
}
ASSERT(flow->f.type == FLOW_TCP);
ASSERT(pif_at_sidx(sidx) == PIF_TAP);
conn = &flow->tcp;
flow_trace(conn, "packet length %zu from tap", len);
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
}
if (th->ack && !(conn->events & ESTABLISHED))
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
/* Establishing connection from socket */
if (conn->events & SOCK_ACCEPTED) {
if (th->syn && th->ack && !th->fin) {
tcp_conn_from_sock_finish(c, conn, th, opts, optlen);
return 1;
}
goto reset;
}
/* Establishing connection from tap */
if (conn->events & TAP_SYN_RCVD) {
if (!(conn->events & TAP_SYN_ACK_SENT))
goto reset;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0))
goto reset;
if (th->fin) {
conn->seq_from_tap++;
shutdown(conn->sock, SHUT_WR);
tcp_send_flag(c, conn, ACK);
conn_event(c, conn, SOCK_FIN_SENT);
return 1;
}
if (!th->ack)
goto reset;
tcp_tap_window_update(conn, ntohs(th->window));
tcp_data_from_sock(c, conn);
if (p->count - idx == 1)
return 1;
}
/* Established connections not accepting data from tap */
if (conn->events & TAP_FIN_RCVD) {
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
if (conn->events & SOCK_FIN_RCVD &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, CLOSED);
return 1;
}
/* Established connections accepting data from tap */
count = tcp_data_from_tap(c, conn, p, idx);
if (count == -1)
goto reset;
conn_flag(c, conn, ~STALLED);
if (conn->seq_ack_to_tap != conn->seq_from_tap)
ack_due = 1;
if ((conn->events & TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_SENT)) {
shutdown(conn->sock, SHUT_WR);
conn_event(c, conn, SOCK_FIN_SENT);
tcp_send_flag(c, conn, ACK);
ack_due = 0;
}
if (ack_due)
conn_flag(c, conn, ACK_TO_TAP_DUE);
return count;
reset:
/* Something's gone wrong, so reset the connection. We discard
* remaining packets in the batch, since they'd be invalidated when our
* RST is received, even if otherwise good.
*/
tcp_rst(c, conn);
return p->count - idx;
}
/**
* tcp_connect_finish() - Handle completion of connect() from EPOLLOUT event
* @c: Execution context
* @conn: Connection pointer
*/
static void tcp_connect_finish(const struct ctx *c, struct tcp_tap_conn *conn)
{
socklen_t sl;
int so;
sl = sizeof(so);
if (getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, &so, &sl) || so) {
tcp_rst(c, conn);
return;
}
if (tcp_send_flag(c, conn, SYN | ACK))
return;
conn_event(c, conn, TAP_SYN_ACK_SENT);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
}
/**
* tcp_tap_conn_from_sock() - Initialize state for non-spliced connection
* @c: Execution context
* @flow: flow to initialise
* @s: Accepted socket
* @sa: Peer socket address (from accept())
* @now: Current timestamp
*/
static void tcp_tap_conn_from_sock(const struct ctx *c, union flow *flow,
int s, const struct timespec *now)
{
struct tcp_tap_conn *conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
uint64_t hash;
conn->sock = s;
conn->timer = -1;
conn->ws_to_tap = conn->ws_from_tap = 0;
conn_event(c, conn, SOCK_ACCEPTED);
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
conn->seq_ack_from_tap = conn->seq_to_tap;
conn->wnd_from_tap = WINDOW_DEFAULT;
tcp_send_flag(c, conn, SYN);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
tcp_get_sndbuf(conn);
FLOW_ACTIVATE(conn);
}
/**
* tcp_listen_handler() - Handle new connection request from listening socket
* @c: Execution context
* @ref: epoll reference of listening socket
* @now: Current timestamp
*/
void tcp_listen_handler(const struct ctx *c, union epoll_ref ref,
const struct timespec *now)
{
const struct flowside *ini;
union sockaddr_inany sa;
socklen_t sl = sizeof(sa);
union flow *flow;
int s;
ASSERT(!c->no_tcp);
if (!(flow = flow_alloc()))
return;
s = accept4(ref.fd, &sa.sa, &sl, SOCK_NONBLOCK);
if (s < 0)
goto cancel;
/* FIXME: When listening port has a specific bound address, record that
* as our address
*/
ini = flow_initiate_sa(flow, ref.tcp_listen.pif, &sa,
ref.tcp_listen.port);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0) {
char sastr[SOCKADDR_STRLEN];
err("Invalid endpoint from TCP accept(): %s",
sockaddr_ntop(&sa, sastr, sizeof(sastr)));
goto cancel;
}
if (!flow_target(c, flow, IPPROTO_TCP))
goto cancel;
switch (flow->f.pif[TGTSIDE]) {
case PIF_SPLICE:
case PIF_HOST:
tcp_splice_conn_from_sock(c, flow, s);
break;
case PIF_TAP:
tcp_tap_conn_from_sock(c, flow, s, now);
break;
default:
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
return;
cancel:
flow_alloc_cancel(flow);
}
/**
* tcp_timer_handler() - timerfd events: close, send ACK, retransmit, or reset
* @c: Execution context
* @ref: epoll reference of timer (not connection)
*
* #syscalls timerfd_gettime arm:timerfd_gettime64 i686:timerfd_gettime64
*/
void tcp_timer_handler(const struct ctx *c, union epoll_ref ref)
{
struct itimerspec check_armed = { { 0 }, { 0 } };
struct tcp_tap_conn *conn = &FLOW(ref.flow)->tcp;
ASSERT(!c->no_tcp);
ASSERT(conn->f.type == FLOW_TCP);
/* We don't reset timers on ~ACK_FROM_TAP_DUE, ~ACK_TO_TAP_DUE. If the
* timer is currently armed, this event came from a previous setting,
* and we just set the timer to a new point in the future: discard it.
*/
if (timerfd_gettime(conn->timer, &check_armed))
flow_err(conn, "failed to read timer: %s", strerror_(errno));
if (check_armed.it_value.tv_sec || check_armed.it_value.tv_nsec)
return;
if (conn->flags & ACK_TO_TAP_DUE) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
tcp_timer_ctl(c, conn);
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED)) {
flow_dbg(conn, "handshake timeout");
tcp_rst(c, conn);
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
flow_dbg(conn, "FIN timeout");
tcp_rst(c, conn);
} else if (conn->retrans == TCP_MAX_RETRANS) {
flow_dbg(conn, "retransmissions count exceeded");
tcp_rst(c, conn);
} else {
flow_dbg(conn, "ACK timeout, retry");
conn->retrans++;
conn->seq_to_tap = conn->seq_ack_from_tap;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
} else {
tcp_data_from_sock(c, conn);
tcp_timer_ctl(c, conn);
}
}
} else {
struct itimerspec new = { { 0 }, { ACT_TIMEOUT, 0 } };
struct itimerspec old = { { 0 }, { 0 } };
/* Activity timeout: if it was already set, reset the
* connection, otherwise, it was a left-over from ACK_TO_TAP_DUE
* or ACK_FROM_TAP_DUE, so just set the long timeout in that
* case. This avoids having to preemptively reset the timer on
* ~ACK_TO_TAP_DUE or ~ACK_FROM_TAP_DUE.
*/
if (timerfd_settime(conn->timer, 0, &new, &old))
flow_err(conn, "failed to set timer: %s",
strerror_(errno));
if (old.it_value.tv_sec == ACT_TIMEOUT) {
flow_dbg(conn, "activity timeout");
tcp_rst(c, conn);
}
}
}
/**
* tcp_sock_handler() - Handle new data from non-spliced socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
*/
void tcp_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events)
{
struct tcp_tap_conn *conn = conn_at_sidx(ref.flowside);
ASSERT(!c->no_tcp);
ASSERT(pif_at_sidx(ref.flowside) != PIF_TAP);
if (conn->events == CLOSED)
return;
if (events & EPOLLERR) {
tcp_rst(c, conn);
return;
}
if ((conn->events & TAP_FIN_SENT) && (events & EPOLLHUP)) {
conn_event(c, conn, CLOSED);
return;
}
if (conn->events & ESTABLISHED) {
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
conn_event(c, conn, CLOSED);
if (events & (EPOLLRDHUP | EPOLLHUP))
conn_event(c, conn, SOCK_FIN_RCVD);
if (events & EPOLLIN)
tcp_data_from_sock(c, conn);
if (events & EPOLLOUT) {
if (tcp_update_seqack_wnd(c, conn, false, NULL))
tcp_send_flag(c, conn, ACK);
}
return;
}
/* EPOLLHUP during handshake: reset */
if (events & EPOLLHUP) {
tcp_rst(c, conn);
return;
}
/* Data during handshake tap-side: check later */
if (conn->events & SOCK_ACCEPTED)
return;
if (conn->events == TAP_SYN_RCVD) {
if (events & EPOLLOUT)
tcp_connect_finish(c, conn);
/* Data? Check later */
}
}
/**
* tcp_sock_init_one() - Initialise listening socket for address and port
* @c: Execution context
* @addr: Pointer to address for binding, NULL for dual stack any
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: fd for the new listening socket, negative error code on failure
*/
static int tcp_sock_init_one(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_HOST,
};
int s;
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_HOST, addr,
ifname, port, tref.u32);
if (c->tcp.fwd_in.mode == FWD_AUTO) {
if (!addr || inany_v4(addr))
tcp_sock_init_ext[port][V4] = s < 0 ? -1 : s;
if (!addr || !inany_v4(addr))
tcp_sock_init_ext[port][V6] = s < 0 ? -1 : s;
}
if (s < 0)
return s;
tcp_sock_set_bufsize(c, s);
return s;
}
/**
* tcp_sock_init() - Create listening sockets for a given host ("inbound") port
* @c: Execution context
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int tcp_sock_init(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
int r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
ASSERT(!c->no_tcp);
if (!addr && c->ifi4 && c->ifi6)
/* Attempt to get a dual stack socket */
if (tcp_sock_init_one(c, NULL, ifname, port) >= 0)
return 0;
/* Otherwise create a socket per IP version */
if ((!addr || inany_v4(addr)) && c->ifi4)
r4 = tcp_sock_init_one(c, addr ? addr : &inany_any4,
ifname, port);
if ((!addr || !inany_v4(addr)) && c->ifi6)
r6 = tcp_sock_init_one(c, addr ? addr : &inany_any6,
ifname, port);
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* tcp_ns_sock_init4() - Init socket to listen for outbound IPv4 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init4(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback4,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V4] = s;
}
/**
* tcp_ns_sock_init6() - Init socket to listen for outbound IPv6 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init6(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback6,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V6] = s;
}
/**
* tcp_ns_sock_init() - Init socket to listen for spliced outbound connections
* @c: Execution context
* @port: Port, host order
*/
void tcp_ns_sock_init(const struct ctx *c, in_port_t port)
{
ASSERT(!c->no_tcp);
if (c->ifi4)
tcp_ns_sock_init4(c, port);
if (c->ifi6)
tcp_ns_sock_init6(c, port);
}
/**
* tcp_ns_socks_init() - Bind sockets in namespace for outbound connections
* @arg: Execution context
*
* Return: 0
*/
/* cppcheck-suppress [constParameterCallback, unmatchedSuppression] */
static int tcp_ns_socks_init(void *arg)
{
const struct ctx *c = (const struct ctx *)arg;
unsigned port;
ns_enter(c);
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(c->tcp.fwd_out.map, port))
continue;
tcp_ns_sock_init(c, port);
}
return 0;
}
/**
* tcp_sock_refill_pool() - Refill one pool of pre-opened sockets
* @c: Execution context
* @pool: Pool of sockets to refill
* @af: Address family to use
*
* Return: 0 on success, negative error code if there was at least one error
*/
int tcp_sock_refill_pool(const struct ctx *c, int pool[], sa_family_t af)
{
int i;
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
int fd;
if (pool[i] >= 0)
continue;
if ((fd = tcp_conn_new_sock(c, af)) < 0)
return fd;
pool[i] = fd;
}
return 0;
}
/**
* tcp_sock_refill_init() - Refill pools of pre-opened sockets in init ns
* @c: Execution context
*/
static void tcp_sock_refill_init(const struct ctx *c)
{
if (c->ifi4) {
int rc = tcp_sock_refill_pool(c, init_sock_pool4, AF_INET);
if (rc < 0)
warn("TCP: Error refilling IPv4 host socket pool: %s",
strerror_(-rc));
}
if (c->ifi6) {
int rc = tcp_sock_refill_pool(c, init_sock_pool6, AF_INET6);
if (rc < 0)
warn("TCP: Error refilling IPv6 host socket pool: %s",
strerror_(-rc));
}
}
/**
* tcp_probe_peek_offset_cap() - Check if SO_PEEK_OFF is supported by kernel
* @af: Address family, IPv4 or IPv6
*
* Return: true if supported, false otherwise
*/
static bool tcp_probe_peek_offset_cap(sa_family_t af)
{
bool ret = false;
int s, optv = 0;
s = socket(af, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
} else {
if (!setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &optv, sizeof(int)))
ret = true;
close(s);
}
return ret;
}
/**
* tcp_probe_tcp_info() - Check what data TCP_INFO reports
*
* Return: Number of bytes returned by TCP_INFO getsockopt()
*/
static socklen_t tcp_probe_tcp_info(void)
{
struct tcp_info_linux tinfo;
socklen_t sl = sizeof(tinfo);
int s;
s = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
return false;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
warn_perror("Failed to get TCP_INFO on temporary socket");
close(s);
return false;
}
close(s);
return sl;
}
/**
* tcp_init() - Get initial sequence, hash secret, initialise per-socket data
* @c: Execution context
*
* Return: 0, doesn't return on failure
*/
int tcp_init(struct ctx *c)
{
ASSERT(!c->no_tcp);
tcp_sock_iov_init(c);
memset(init_sock_pool4, 0xff, sizeof(init_sock_pool4));
memset(init_sock_pool6, 0xff, sizeof(init_sock_pool6));
memset(tcp_sock_init_ext, 0xff, sizeof(tcp_sock_init_ext));
memset(tcp_sock_ns, 0xff, sizeof(tcp_sock_ns));
tcp_sock_refill_init(c);
if (c->mode == MODE_PASTA) {
tcp_splice_init(c);
NS_CALL(tcp_ns_socks_init, c);
}
peek_offset_cap = (!c->ifi4 || tcp_probe_peek_offset_cap(AF_INET)) &&
(!c->ifi6 || tcp_probe_peek_offset_cap(AF_INET6));
debug("SO_PEEK_OFF%ssupported", peek_offset_cap ? " " : " not ");
tcp_info_size = tcp_probe_tcp_info();
#define dbg_tcpi(f_) debug("TCP_INFO tcpi_%s field%s supported", \
STRINGIFY(f_), tcp_info_cap(f_) ? " " : " not ")
dbg_tcpi(snd_wnd);
dbg_tcpi(bytes_acked);
dbg_tcpi(min_rtt);
#undef dbg_tcpi
return 0;
}
/**
* tcp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void tcp_port_rebind(struct ctx *c, bool outbound)
{
const uint8_t *fmap = outbound ? c->tcp.fwd_out.map : c->tcp.fwd_in.map;
const uint8_t *rmap = outbound ? c->tcp.fwd_in.map : c->tcp.fwd_out.map;
int (*socks)[IP_VERSIONS] = outbound ? tcp_sock_ns : tcp_sock_init_ext;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[port][V4] >= 0) {
close(socks[port][V4]);
socks[port][V4] = -1;
}
if (socks[port][V6] >= 0) {
close(socks[port][V6]);
socks[port][V6] = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[port][V4] == -1) ||
(c->ifi6 && socks[port][V6] == -1)) {
if (outbound)
tcp_ns_sock_init(c, port);
else
tcp_sock_init(c, NULL, NULL, port);
}
}
}
/**
* tcp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int tcp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
tcp_port_rebind(c, true);
return 0;
}
/**
* tcp_timer() - Periodic tasks: port detection, closed connections, pool refill
* @c: Execution context
* @now: Current timestamp
*/
void tcp_timer(struct ctx *c, const struct timespec *now)
{
(void)now;
if (c->mode == MODE_PASTA) {
if (c->tcp.fwd_out.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(tcp_port_rebind_outbound, c);
}
if (c->tcp.fwd_in.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_in, &c->tcp.fwd_out);
tcp_port_rebind(c, false);
}
}
tcp_sock_refill_init(c);
if (c->mode == MODE_PASTA)
tcp_splice_refill(c);
}