1
0
mirror of https://passt.top/passt synced 2024-11-09 22:29:56 +00:00
passt/udp.c
David Gibson 898f797174 udp: Direct datagrams from host to guest via flow table
This replaces the last piece of existing UDP port tracking with the
common flow table.  Specifically use the flow table to direct datagrams
from host sockets to the guest tap interface.  Since this now requires
a flow for every datagram, we add some logging if we encounter any
datagrams for which we can't find or create a flow.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-07-19 18:33:51 +02:00

1287 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* udp.c - UDP L2-L4 translation routines
*
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
* UDP Flows
* =========
*
* UDP doesn't have true connections, but many protocols use a connection-like
* format. The flow is initiated by a client sending a datagram from a port of
* its choosing (usually ephemeral) to a specific port (usually well known) on a
* server. Both client and server address must be unicast. The server sends
* replies using the same addresses & ports with src/dest swapped.
*
* We track pseudo-connections of this type as flow table entries of type
* FLOW_UDP. We store the time of the last traffic on the flow in uflow->ts,
* and let the flow expire if there is no traffic for UDP_CONN_TIMEOUT seconds.
*
* NOTE: This won't handle multicast protocols, or some protocols with different
* port usage. We'll need specific logic if we want to handle those.
*
* "Listening" sockets
* ===================
*
* UDP doesn't use listen(), but we consider long term sockets which are allowed
* to create new flows "listening" by analogy with TCP. This listening socket
* could receive packets from multiple flows, so we use a hash table match to
* find the specific flow for a datagram.
*
* When a UDP flow is initiated from a listening socket we take a duplicate of
* the socket and store it in uflow->s[INISIDE]. This will last for the
* lifetime of the flow, even if the original listening socket is closed due to
* port auto-probing. The duplicate is used to deliver replies back to the
* originating side.
*
* Reply sockets
* =============
*
* When a UDP flow targets a socket, we create a "reply" socket in
* uflow->s[TGTSIDE] both to deliver datagrams to the target side and receive
* replies on the target side. This socket is both bound and connected and has
* EPOLL_TYPE_UDP_REPLY. The connect() means it will only receive datagrams
* associated with this flow, so the epoll reference directly points to the flow
* and we don't need a hash lookup.
*
* NOTE: it's possible that the reply socket could have a bound address
* overlapping with an unrelated listening socket. We assume datagrams for the
* flow will come to the reply socket in preference to a listening socket. The
* sample program doc/platform-requirements/reuseaddr-priority.c documents and
* tests that assumption.
*
* "Spliced" flows
* ===============
*
* In PASTA mode, L2-L4 translation is skipped for connections to ports bound
* between namespaces using the loopback interface, messages are directly
* transferred between L4 sockets instead. These are called spliced connections
* in analogy with the TCP implementation. The the splice() syscall isn't
* actually used; it doesn't make sense for datagrams and instead a pair of
* recvmmsg() and sendmmsg() is used to forward the datagrams.
*
* Note that a spliced flow will have *both* a duplicated listening socket and a
* reply socket (see above).
*/
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <limits.h>
#include <assert.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <time.h>
#include <fcntl.h>
#include <arpa/inet.h>
#include <linux/errqueue.h>
#include "checksum.h"
#include "util.h"
#include "iov.h"
#include "ip.h"
#include "siphash.h"
#include "inany.h"
#include "passt.h"
#include "tap.h"
#include "pcap.h"
#include "log.h"
#include "flow_table.h"
#define UDP_CONN_TIMEOUT 180 /* s, timeout for ephemeral or local bind */
#define UDP_MAX_FRAMES 32 /* max # of frames to receive at once */
/**
* struct udp_tap_port - Port tracking based on tap-facing source port
* @sock: Socket bound to source port used as index
* @flags: Flags for recent activity type seen from/to port
* @ts: Activity timestamp from tap, used for socket aging
*/
struct udp_tap_port {
int sock;
uint8_t flags;
#define PORT_LOCAL BIT(0) /* Port was contacted from local address */
#define PORT_LOOPBACK BIT(1) /* Port was contacted from loopback address */
#define PORT_GUA BIT(2) /* Port was contacted from global unicast */
#define PORT_DNS_FWD BIT(3) /* Port used as source for DNS remapped query */
time_t ts;
};
/* Port tracking, arrays indexed by packet source port (host order) */
static struct udp_tap_port udp_tap_map [IP_VERSIONS][NUM_PORTS];
/* "Spliced" sockets indexed by bound port (host order) */
static int udp_splice_ns [IP_VERSIONS][NUM_PORTS];
static int udp_splice_init[IP_VERSIONS][NUM_PORTS];
enum udp_act_type {
UDP_ACT_TAP,
UDP_ACT_TYPE_MAX,
};
/* Activity-based aging for bindings */
static uint8_t udp_act[IP_VERSIONS][UDP_ACT_TYPE_MAX][DIV_ROUND_UP(NUM_PORTS, 8)];
/* Static buffers */
/**
* struct udp_payload_t - UDP header and data for inbound messages
* @uh: UDP header
* @data: UDP data
*/
static struct udp_payload_t {
struct udphdr uh;
char data[USHRT_MAX - sizeof(struct udphdr)];
#ifdef __AVX2__
} __attribute__ ((packed, aligned(32)))
#else
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
#endif
udp_payload[UDP_MAX_FRAMES];
/* Ethernet header for IPv4 frames */
static struct ethhdr udp4_eth_hdr;
/* Ethernet header for IPv6 frames */
static struct ethhdr udp6_eth_hdr;
/**
* struct udp_meta_t - Pre-cooked headers and metadata for UDP packets
* @ip6h: Pre-filled IPv6 header (except for payload_len and addresses)
* @ip4h: Pre-filled IPv4 header (except for tot_len and saddr)
* @taph: Tap backend specific header
* @s_in: Source socket address, filled in by recvmmsg()
* @tosidx: sidx for the destination side of this datagram's flow
*/
static struct udp_meta_t {
struct ipv6hdr ip6h;
struct iphdr ip4h;
struct tap_hdr taph;
union sockaddr_inany s_in;
flow_sidx_t tosidx;
}
#ifdef __AVX2__
__attribute__ ((aligned(32)))
#endif
udp_meta[UDP_MAX_FRAMES];
/**
* enum udp_iov_idx - Indices for the buffers making up a single UDP frame
* @UDP_IOV_TAP tap specific header
* @UDP_IOV_ETH Ethernet header
* @UDP_IOV_IP IP (v4/v6) header
* @UDP_IOV_PAYLOAD IP payload (UDP header + data)
* @UDP_NUM_IOVS the number of entries in the iovec array
*/
enum udp_iov_idx {
UDP_IOV_TAP = 0,
UDP_IOV_ETH = 1,
UDP_IOV_IP = 2,
UDP_IOV_PAYLOAD = 3,
UDP_NUM_IOVS
};
/* IOVs and msghdr arrays for receiving datagrams from sockets */
static struct iovec udp_iov_recv [UDP_MAX_FRAMES];
static struct mmsghdr udp4_mh_recv [UDP_MAX_FRAMES];
static struct mmsghdr udp6_mh_recv [UDP_MAX_FRAMES];
/* IOVs and msghdr arrays for sending "spliced" datagrams to sockets */
static union sockaddr_inany udp_splice_to;
static struct iovec udp_iov_splice [UDP_MAX_FRAMES];
static struct mmsghdr udp_mh_splice [UDP_MAX_FRAMES];
/* IOVs for L2 frames */
static struct iovec udp_l2_iov [UDP_MAX_FRAMES][UDP_NUM_IOVS];
/**
* udp_portmap_clear() - Clear UDP port map before configuration
*/
void udp_portmap_clear(void)
{
unsigned i;
for (i = 0; i < NUM_PORTS; i++) {
udp_tap_map[V4][i].sock = udp_tap_map[V6][i].sock = -1;
udp_splice_ns[V4][i] = udp_splice_ns[V6][i] = -1;
udp_splice_init[V4][i] = udp_splice_init[V6][i] = -1;
}
}
/**
* udp_invert_portmap() - Compute reverse port translations for return packets
* @fwd: Port forwarding configuration to compute reverse map for
*/
static void udp_invert_portmap(struct udp_fwd_ports *fwd)
{
unsigned int i;
static_assert(ARRAY_SIZE(fwd->f.delta) == ARRAY_SIZE(fwd->rdelta),
"Forward and reverse delta arrays must have same size");
for (i = 0; i < ARRAY_SIZE(fwd->f.delta); i++) {
in_port_t delta = fwd->f.delta[i];
if (delta) {
/* Keep rport calculation separate from its usage: we
* need to perform the sum in in_port_t width (that is,
* modulo 65536), but C promotion rules would sum the
* two terms as 'int', if we just open-coded the array
* index as 'i + delta'.
*/
in_port_t rport = i + delta;
fwd->rdelta[rport] = NUM_PORTS - delta;
}
}
}
/**
* udp_update_l2_buf() - Update L2 buffers with Ethernet and IPv4 addresses
* @eth_d: Ethernet destination address, NULL if unchanged
* @eth_s: Ethernet source address, NULL if unchanged
*/
void udp_update_l2_buf(const unsigned char *eth_d, const unsigned char *eth_s)
{
eth_update_mac(&udp4_eth_hdr, eth_d, eth_s);
eth_update_mac(&udp6_eth_hdr, eth_d, eth_s);
}
/**
* udp_iov_init_one() - Initialise scatter-gather lists for one buffer
* @c: Execution context
* @i: Index of buffer to initialize
*/
static void udp_iov_init_one(const struct ctx *c, size_t i)
{
struct udp_payload_t *payload = &udp_payload[i];
struct udp_meta_t *meta = &udp_meta[i];
struct iovec *siov = &udp_iov_recv[i];
struct iovec *tiov = udp_l2_iov[i];
*meta = (struct udp_meta_t) {
.ip4h = L2_BUF_IP4_INIT(IPPROTO_UDP),
.ip6h = L2_BUF_IP6_INIT(IPPROTO_UDP),
};
*siov = IOV_OF_LVALUE(payload->data);
tiov[UDP_IOV_TAP] = tap_hdr_iov(c, &meta->taph);
tiov[UDP_IOV_PAYLOAD].iov_base = payload;
/* It's useful to have separate msghdr arrays for receiving. Otherwise,
* an IPv4 recv() will alter msg_namelen, so we'd have to reset it every
* time or risk truncating the address on future IPv6 recv()s.
*/
if (c->ifi4) {
struct msghdr *mh = &udp4_mh_recv[i].msg_hdr;
mh->msg_name = &meta->s_in;
mh->msg_namelen = sizeof(struct sockaddr_in);
mh->msg_iov = siov;
mh->msg_iovlen = 1;
}
if (c->ifi6) {
struct msghdr *mh = &udp6_mh_recv[i].msg_hdr;
mh->msg_name = &meta->s_in;
mh->msg_namelen = sizeof(struct sockaddr_in6);
mh->msg_iov = siov;
mh->msg_iovlen = 1;
}
}
/**
* udp_iov_init() - Initialise scatter-gather L2 buffers
* @c: Execution context
*/
static void udp_iov_init(const struct ctx *c)
{
size_t i;
udp4_eth_hdr.h_proto = htons_constant(ETH_P_IP);
udp6_eth_hdr.h_proto = htons_constant(ETH_P_IPV6);
for (i = 0; i < UDP_MAX_FRAMES; i++)
udp_iov_init_one(c, i);
}
/**
* udp_at_sidx() - Get UDP specific flow at given sidx
* @sidx: Flow and side to retrieve
*
* Return: UDP specific flow at @sidx, or NULL of @sidx is invalid. Asserts if
* the flow at @sidx is not FLOW_UDP.
*/
struct udp_flow *udp_at_sidx(flow_sidx_t sidx)
{
union flow *flow = flow_at_sidx(sidx);
if (!flow)
return NULL;
ASSERT(flow->f.type == FLOW_UDP);
return &flow->udp;
}
/*
* udp_flow_close() - Close and clean up UDP flow
* @c: Execution context
* @uflow: UDP flow
*/
static void udp_flow_close(const struct ctx *c, struct udp_flow *uflow)
{
if (uflow->s[INISIDE] >= 0) {
/* The listening socket needs to stay in epoll */
close(uflow->s[INISIDE]);
uflow->s[INISIDE] = -1;
}
if (uflow->s[TGTSIDE] >= 0) {
/* But the flow specific one needs to be removed */
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, uflow->s[TGTSIDE], NULL);
close(uflow->s[TGTSIDE]);
uflow->s[TGTSIDE] = -1;
}
flow_hash_remove(c, FLOW_SIDX(uflow, INISIDE));
if (!pif_is_socket(uflow->f.pif[TGTSIDE]))
flow_hash_remove(c, FLOW_SIDX(uflow, TGTSIDE));
}
/**
* udp_flow_new() - Common setup for a new UDP flow
* @c: Execution context
* @flow: Initiated flow
* @s_ini: Initiating socket (or -1)
* @now: Timestamp
*
* Return: UDP specific flow, if successful, NULL on failure
*/
static flow_sidx_t udp_flow_new(const struct ctx *c, union flow *flow,
int s_ini, const struct timespec *now)
{
const struct flowside *ini = &flow->f.side[INISIDE];
struct udp_flow *uflow = NULL;
const struct flowside *tgt;
uint8_t tgtpif;
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0) {
flow_trace(flow, "Invalid endpoint to initiate UDP flow");
goto cancel;
}
if (!(tgt = flow_target(c, flow, IPPROTO_UDP)))
goto cancel;
tgtpif = flow->f.pif[TGTSIDE];
uflow = FLOW_SET_TYPE(flow, FLOW_UDP, udp);
uflow->ts = now->tv_sec;
uflow->s[INISIDE] = uflow->s[TGTSIDE] = -1;
if (s_ini >= 0) {
/* When using auto port-scanning the listening port could go
* away, so we need to duplicate the socket
*/
uflow->s[INISIDE] = fcntl(s_ini, F_DUPFD_CLOEXEC, 0);
if (uflow->s[INISIDE] < 0) {
flow_err(uflow,
"Couldn't duplicate listening socket: %s",
strerror(errno));
goto cancel;
}
}
if (pif_is_socket(tgtpif)) {
struct mmsghdr discard[UIO_MAXIOV] = { 0 };
union {
flow_sidx_t sidx;
uint32_t data;
} fref = {
.sidx = FLOW_SIDX(flow, TGTSIDE),
};
int rc;
uflow->s[TGTSIDE] = flowside_sock_l4(c, EPOLL_TYPE_UDP_REPLY,
tgtpif, tgt, fref.data);
if (uflow->s[TGTSIDE] < 0) {
flow_dbg(uflow,
"Couldn't open socket for spliced flow: %s",
strerror(errno));
goto cancel;
}
if (flowside_connect(c, uflow->s[TGTSIDE], tgtpif, tgt) < 0) {
flow_dbg(uflow,
"Couldn't connect flow socket: %s",
strerror(errno));
goto cancel;
}
/* It's possible, if unlikely, that we could receive some
* unrelated packets in between the bind() and connect() of this
* socket. For now we just discard these. We could consider
* trying to redirect these to an appropriate handler, if we
* need to.
*/
rc = recvmmsg(uflow->s[TGTSIDE], discard, ARRAY_SIZE(discard),
MSG_DONTWAIT, NULL);
if (rc >= ARRAY_SIZE(discard)) {
flow_dbg(uflow,
"Too many (%d) spurious reply datagrams", rc);
goto cancel;
} else if (rc > 0) {
flow_trace(uflow,
"Discarded %d spurious reply datagrams", rc);
} else if (errno != EAGAIN) {
flow_err(uflow,
"Unexpected error discarding datagrams: %s",
strerror(errno));
}
}
flow_hash_insert(c, FLOW_SIDX(uflow, INISIDE));
/* If the target side is a socket, it will be a reply socket that knows
* its own flowside. But if it's tap, then we need to look it up by
* hash.
*/
if (!pif_is_socket(tgtpif))
flow_hash_insert(c, FLOW_SIDX(uflow, TGTSIDE));
FLOW_ACTIVATE(uflow);
return FLOW_SIDX(uflow, TGTSIDE);
cancel:
if (uflow)
udp_flow_close(c, uflow);
flow_alloc_cancel(flow);
return FLOW_SIDX_NONE;
}
/**
* udp_flow_from_sock() - Find or create UDP flow for "listening" socket
* @c: Execution context
* @ref: epoll reference of the receiving socket
* @meta: Metadata buffer for the datagram
* @now: Timestamp
*
* #syscalls fcntl
*
* Return: sidx for the destination side of the flow for this packet, or
* FLOW_SIDX_NONE if we couldn't find or create a flow.
*/
static flow_sidx_t udp_flow_from_sock(const struct ctx *c, union epoll_ref ref,
struct udp_meta_t *meta,
const struct timespec *now)
{
struct udp_flow *uflow;
union flow *flow;
flow_sidx_t sidx;
ASSERT(ref.type == EPOLL_TYPE_UDP);
if (!ref.udp.orig)
return FLOW_SIDX_NONE;
sidx = flow_lookup_sa(c, IPPROTO_UDP, ref.udp.pif, &meta->s_in, ref.udp.port);
if ((uflow = udp_at_sidx(sidx))) {
uflow->ts = now->tv_sec;
return flow_sidx_opposite(sidx);
}
if (!(flow = flow_alloc())) {
char sastr[SOCKADDR_STRLEN];
debug("Couldn't allocate flow for UDP datagram from %s %s",
pif_name(ref.udp.pif),
sockaddr_ntop(&meta->s_in, sastr, sizeof(sastr)));
return FLOW_SIDX_NONE;
}
flow_initiate_sa(flow, ref.udp.pif, &meta->s_in, ref.udp.port);
return udp_flow_new(c, flow, ref.fd, now);
}
/**
* udp_splice_prepare() - Prepare one datagram for splicing
* @mmh: Receiving mmsghdr array
* @idx: Index of the datagram to prepare
*/
static void udp_splice_prepare(struct mmsghdr *mmh, unsigned idx)
{
udp_mh_splice[idx].msg_hdr.msg_iov->iov_len = mmh[idx].msg_len;
}
/**
* udp_splice_send() - Send a batch of datagrams from socket to socket
* @c: Execution context
* @start: Index of batch's first datagram in udp[46]_l2_buf
* @n: Number of datagrams in batch
* @src: Source port for datagram (target side)
* @dst: Destination port for datagrams (target side)
* @ref: epoll reference for origin socket
* @now: Timestamp
*/
static void udp_splice_send(const struct ctx *c, size_t start, size_t n,
flow_sidx_t tosidx)
{
const struct flowside *toside = flowside_at_sidx(tosidx);
const struct udp_flow *uflow = udp_at_sidx(tosidx);
uint8_t topif = pif_at_sidx(tosidx);
int s = uflow->s[tosidx.sidei];
socklen_t sl;
pif_sockaddr(c, &udp_splice_to, &sl, topif,
&toside->eaddr, toside->eport);
sendmmsg(s, udp_mh_splice + start, n, MSG_NOSIGNAL);
}
/**
* udp_update_hdr4() - Update headers for one IPv4 datagram
* @ip4h: Pre-filled IPv4 header (except for tot_len and saddr)
* @bp: Pointer to udp_payload_t to update
* @toside: Flowside for destination side
* @dlen: Length of UDP payload
*
* Return: size of IPv4 payload (UDP header + data)
*/
static size_t udp_update_hdr4(struct iphdr *ip4h, struct udp_payload_t *bp,
const struct flowside *toside, size_t dlen)
{
const struct in_addr *src = inany_v4(&toside->faddr);
const struct in_addr *dst = inany_v4(&toside->eaddr);
size_t l4len = dlen + sizeof(bp->uh);
size_t l3len = l4len + sizeof(*ip4h);
ASSERT(src && dst);
ip4h->tot_len = htons(l3len);
ip4h->daddr = dst->s_addr;
ip4h->saddr = src->s_addr;
ip4h->check = csum_ip4_header(l3len, IPPROTO_UDP, *src, *dst);
bp->uh.source = htons(toside->fport);
bp->uh.dest = htons(toside->eport);
bp->uh.len = htons(l4len);
csum_udp4(&bp->uh, *src, *dst, bp->data, dlen);
return l4len;
}
/**
* udp_update_hdr6() - Update headers for one IPv6 datagram
* @ip6h: Pre-filled IPv6 header (except for payload_len and addresses)
* @bp: Pointer to udp_payload_t to update
* @toside: Flowside for destination side
* @dlen: Length of UDP payload
*
* Return: size of IPv6 payload (UDP header + data)
*/
static size_t udp_update_hdr6(struct ipv6hdr *ip6h, struct udp_payload_t *bp,
const struct flowside *toside, size_t dlen)
{
uint16_t l4len = dlen + sizeof(bp->uh);
ip6h->payload_len = htons(l4len);
ip6h->daddr = toside->eaddr.a6;
ip6h->saddr = toside->faddr.a6;
ip6h->version = 6;
ip6h->nexthdr = IPPROTO_UDP;
ip6h->hop_limit = 255;
bp->uh.source = htons(toside->fport);
bp->uh.dest = htons(toside->eport);
bp->uh.len = ip6h->payload_len;
csum_udp6(&bp->uh, &toside->faddr.a6, &toside->eaddr.a6, bp->data, dlen);
return l4len;
}
/**
* udp_tap_prepare() - Convert one datagram into a tap frame
* @mmh: Receiving mmsghdr array
* @idx: Index of the datagram to prepare
* @toside: Flowside for destination side
*/
static void udp_tap_prepare(const struct mmsghdr *mmh, unsigned idx,
const struct flowside *toside)
{
struct iovec (*tap_iov)[UDP_NUM_IOVS] = &udp_l2_iov[idx];
struct udp_payload_t *bp = &udp_payload[idx];
struct udp_meta_t *bm = &udp_meta[idx];
size_t l4len;
if (!inany_v4(&toside->eaddr) || !inany_v4(&toside->faddr)) {
l4len = udp_update_hdr6(&bm->ip6h, bp, toside, mmh[idx].msg_len);
tap_hdr_update(&bm->taph, l4len + sizeof(bm->ip6h) +
sizeof(udp6_eth_hdr));
(*tap_iov)[UDP_IOV_ETH] = IOV_OF_LVALUE(udp6_eth_hdr);
(*tap_iov)[UDP_IOV_IP] = IOV_OF_LVALUE(bm->ip6h);
} else {
l4len = udp_update_hdr4(&bm->ip4h, bp, toside, mmh[idx].msg_len);
tap_hdr_update(&bm->taph, l4len + sizeof(bm->ip4h) +
sizeof(udp4_eth_hdr));
(*tap_iov)[UDP_IOV_ETH] = IOV_OF_LVALUE(udp4_eth_hdr);
(*tap_iov)[UDP_IOV_IP] = IOV_OF_LVALUE(bm->ip4h);
}
(*tap_iov)[UDP_IOV_PAYLOAD].iov_len = l4len;
}
/**
* udp_sock_recverr() - Receive and clear an error from a socket
* @s: Socket to receive from
*
* Return: true if errors received and processed, false if no more errors
*
* #syscalls recvmsg
*/
static bool udp_sock_recverr(int s)
{
const struct sock_extended_err *ee;
const struct cmsghdr *hdr;
char buf[CMSG_SPACE(sizeof(*ee))];
struct msghdr mh = {
.msg_name = NULL,
.msg_namelen = 0,
.msg_iov = NULL,
.msg_iovlen = 0,
.msg_control = buf,
.msg_controllen = sizeof(buf),
};
ssize_t rc;
rc = recvmsg(s, &mh, MSG_ERRQUEUE);
if (rc < 0) {
if (errno != EAGAIN && errno != EWOULDBLOCK)
err_perror("Failed to read error queue");
return false;
}
if (!(mh.msg_flags & MSG_ERRQUEUE)) {
err("Missing MSG_ERRQUEUE flag reading error queue");
return false;
}
hdr = CMSG_FIRSTHDR(&mh);
if (!((hdr->cmsg_level == IPPROTO_IP &&
hdr->cmsg_type == IP_RECVERR) ||
(hdr->cmsg_level == IPPROTO_IPV6 &&
hdr->cmsg_type == IPV6_RECVERR))) {
err("Unexpected cmsg reading error queue");
return false;
}
ee = (const struct sock_extended_err *)CMSG_DATA(hdr);
/* TODO: When possible propagate and otherwise handle errors */
debug("%s error on UDP socket %i: %s",
str_ee_origin(ee), s, strerror(ee->ee_errno));
return true;
}
/**
* udp_sock_recv() - Receive datagrams from a socket
* @c: Execution context
* @s: Socket to receive from
* @events: epoll events bitmap
* @mmh mmsghdr array to receive into
*
* #syscalls recvmmsg
*/
static int udp_sock_recv(const struct ctx *c, int s, uint32_t events,
struct mmsghdr *mmh)
{
/* For not entirely clear reasons (data locality?) pasta gets better
* throughput if we receive tap datagrams one at a atime. For small
* splice datagrams throughput is slightly better if we do batch, but
* it's slightly worse for large splice datagrams. Since we don't know
* before we receive whether we'll use tap or splice, always go one at a
* time for pasta mode.
*/
int n = (c->mode == MODE_PASTA ? 1 : UDP_MAX_FRAMES);
ASSERT(!c->no_udp);
/* Clear any errors first */
if (events & EPOLLERR) {
while (udp_sock_recverr(s))
;
}
if (!(events & EPOLLIN))
return 0;
n = recvmmsg(s, mmh, n, 0, NULL);
if (n < 0) {
err_perror("Error receiving datagrams");
return 0;
}
return n;
}
/**
* udp_buf_sock_handler() - Handle new data from socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
* @now: Current timestamp
*
* #syscalls recvmmsg
*/
void udp_buf_sock_handler(const struct ctx *c, union epoll_ref ref, uint32_t events,
const struct timespec *now)
{
struct mmsghdr *mmh_recv = ref.udp.v6 ? udp6_mh_recv : udp4_mh_recv;
int n, i;
if ((n = udp_sock_recv(c, ref.fd, events, mmh_recv)) <= 0)
return;
/* We divide datagrams into batches based on how we need to send them,
* determined by udp_meta[i].tosidx. To avoid either two passes through
* the array, or recalculating tosidx for a single entry, we have to
* populate it one entry *ahead* of the loop counter.
*/
udp_meta[0].tosidx = udp_flow_from_sock(c, ref, &udp_meta[0], now);
for (i = 0; i < n; ) {
flow_sidx_t batchsidx = udp_meta[i].tosidx;
uint8_t batchpif = pif_at_sidx(batchsidx);
int batchstart = i;
do {
if (pif_is_socket(batchpif)) {
udp_splice_prepare(mmh_recv, i);
} else if (batchpif == PIF_TAP) {
udp_tap_prepare(mmh_recv, i,
flowside_at_sidx(batchsidx));
}
if (++i >= n)
break;
udp_meta[i].tosidx = udp_flow_from_sock(c, ref,
&udp_meta[i],
now);
} while (flow_sidx_eq(udp_meta[i].tosidx, batchsidx));
if (pif_is_socket(batchpif)) {
udp_splice_send(c, batchstart, i - batchstart,
batchsidx);
} else if (batchpif == PIF_TAP) {
tap_send_frames(c, &udp_l2_iov[batchstart][0],
UDP_NUM_IOVS, i - batchstart);
} else if (flow_sidx_valid(batchsidx)) {
flow_sidx_t fromsidx = flow_sidx_opposite(batchsidx);
struct udp_flow *uflow = udp_at_sidx(batchsidx);
flow_err(uflow,
"No support for forwarding UDP from %s to %s",
pif_name(pif_at_sidx(fromsidx)),
pif_name(batchpif));
} else {
debug("Discarding %d datagrams without flow",
i - batchstart);
}
}
}
/**
* udp_reply_sock_handler() - Handle new data from flow specific socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
* @now: Current timestamp
*
* #syscalls recvmmsg
*/
void udp_reply_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events, const struct timespec *now)
{
const struct flowside *fromside = flowside_at_sidx(ref.flowside);
flow_sidx_t tosidx = flow_sidx_opposite(ref.flowside);
const struct flowside *toside = flowside_at_sidx(tosidx);
struct udp_flow *uflow = udp_at_sidx(ref.flowside);
int from_s = uflow->s[ref.flowside.sidei];
bool v6 = !inany_v4(&fromside->eaddr);
struct mmsghdr *mmh_recv = v6 ? udp6_mh_recv : udp4_mh_recv;
uint8_t topif = pif_at_sidx(tosidx);
int n, i;
ASSERT(!c->no_udp && uflow);
if ((n = udp_sock_recv(c, from_s, events, mmh_recv)) <= 0)
return;
flow_trace(uflow, "Received %d datagrams on reply socket", n);
uflow->ts = now->tv_sec;
for (i = 0; i < n; i++) {
if (pif_is_socket(topif))
udp_splice_prepare(mmh_recv, i);
else if (topif == PIF_TAP)
udp_tap_prepare(mmh_recv, i, toside);
}
if (pif_is_socket(topif)) {
udp_splice_send(c, 0, n, tosidx);
} else if (topif == PIF_TAP) {
tap_send_frames(c, &udp_l2_iov[0][0], UDP_NUM_IOVS, n);
} else {
uint8_t frompif = pif_at_sidx(ref.flowside);
flow_err(uflow, "No support for forwarding UDP from %s to %s",
pif_name(frompif), pif_name(topif));
}
}
/**
* udp_flow_from_tap() - Find or create UDP flow for tap packets
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address on guest side
* @daddr: Destination address guest side
* @srcport: Source port on guest side
* @dstport: Destination port on guest side
*
* Return: sidx for the destination side of the flow for this packet, or
* FLOW_SIDX_NONE if we couldn't find or create a flow.
*/
static flow_sidx_t udp_flow_from_tap(const struct ctx *c,
uint8_t pif, sa_family_t af,
const void *saddr, const void *daddr,
in_port_t srcport, in_port_t dstport,
const struct timespec *now)
{
struct udp_flow *uflow;
union flow *flow;
flow_sidx_t sidx;
ASSERT(pif == PIF_TAP);
sidx = flow_lookup_af(c, IPPROTO_UDP, pif, af, saddr, daddr,
srcport, dstport);
if ((uflow = udp_at_sidx(sidx))) {
uflow->ts = now->tv_sec;
return flow_sidx_opposite(sidx);
}
if (!(flow = flow_alloc())) {
char sstr[INET6_ADDRSTRLEN], dstr[INET6_ADDRSTRLEN];
debug("Couldn't allocate flow for UDP datagram from %s %s:%hu -> %s:%hu",
pif_name(pif),
inet_ntop(af, saddr, sstr, sizeof(sstr)), srcport,
inet_ntop(af, daddr, dstr, sizeof(dstr)), dstport);
return FLOW_SIDX_NONE;
}
flow_initiate_af(flow, PIF_TAP, af, saddr, srcport, daddr, dstport);
return udp_flow_new(c, flow, -1, now);
}
/**
* udp_tap_handler() - Handle packets from tap
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of UDP packets, with UDP headers
* @idx: Index of first packet to process
* @now: Current timestamp
*
* Return: count of consumed packets
*
* #syscalls sendmmsg
*/
int udp_tap_handler(const struct ctx *c, uint8_t pif,
sa_family_t af, const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
{
const struct flowside *toside;
struct mmsghdr mm[UIO_MAXIOV];
union sockaddr_inany to_sa;
struct iovec m[UIO_MAXIOV];
const struct udphdr *uh;
struct udp_flow *uflow;
int i, s, count = 0;
flow_sidx_t tosidx;
in_port_t src, dst;
uint8_t topif;
socklen_t sl;
ASSERT(!c->no_udp);
uh = packet_get(p, idx, 0, sizeof(*uh), NULL);
if (!uh)
return 1;
/* The caller already checks that all the messages have the same source
* and destination, so we can just take those from the first message.
*/
src = ntohs(uh->source);
dst = ntohs(uh->dest);
tosidx = udp_flow_from_tap(c, pif, af, saddr, daddr, src, dst, now);
if (!(uflow = udp_at_sidx(tosidx))) {
char sstr[INET6_ADDRSTRLEN], dstr[INET6_ADDRSTRLEN];
debug("Dropping datagram with no flow %s %s:%hu -> %s:%hu",
pif_name(pif),
inet_ntop(af, saddr, sstr, sizeof(sstr)), src,
inet_ntop(af, daddr, dstr, sizeof(dstr)), dst);
return 1;
}
topif = pif_at_sidx(tosidx);
if (topif != PIF_HOST) {
flow_sidx_t fromsidx = flow_sidx_opposite(tosidx);
uint8_t frompif = pif_at_sidx(fromsidx);
flow_err(uflow, "No support for forwarding UDP from %s to %s",
pif_name(frompif), pif_name(topif));
return 1;
}
toside = flowside_at_sidx(tosidx);
s = udp_at_sidx(tosidx)->s[tosidx.sidei];
ASSERT(s >= 0);
pif_sockaddr(c, &to_sa, &sl, topif, &toside->eaddr, toside->eport);
for (i = 0; i < (int)p->count - idx; i++) {
struct udphdr *uh_send;
size_t len;
uh_send = packet_get(p, idx + i, 0, sizeof(*uh), &len);
if (!uh_send)
return p->count - idx;
mm[i].msg_hdr.msg_name = &to_sa;
mm[i].msg_hdr.msg_namelen = sl;
if (len) {
m[i].iov_base = (char *)(uh_send + 1);
m[i].iov_len = len;
mm[i].msg_hdr.msg_iov = m + i;
mm[i].msg_hdr.msg_iovlen = 1;
} else {
mm[i].msg_hdr.msg_iov = NULL;
mm[i].msg_hdr.msg_iovlen = 0;
}
mm[i].msg_hdr.msg_control = NULL;
mm[i].msg_hdr.msg_controllen = 0;
mm[i].msg_hdr.msg_flags = 0;
count++;
}
count = sendmmsg(s, mm, count, MSG_NOSIGNAL);
if (count < 0)
return 1;
return count;
}
/**
* udp_sock_init() - Initialise listening sockets for a given port
* @c: Execution context
* @ns: In pasta mode, if set, bind with loopback address in namespace
* @af: Address family to select a specific IP version, or AF_UNSPEC
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int udp_sock_init(const struct ctx *c, int ns, sa_family_t af,
const void *addr, const char *ifname, in_port_t port)
{
union udp_epoll_ref uref = { .orig = true, .port = port };
int s, r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
ASSERT(!c->no_udp);
if (ns)
uref.pif = PIF_SPLICE;
else
uref.pif = PIF_HOST;
if ((af == AF_INET || af == AF_UNSPEC) && c->ifi4) {
uref.v6 = 0;
if (!ns) {
r4 = s = sock_l4(c, AF_INET, EPOLL_TYPE_UDP, addr,
ifname, port, uref.u32);
udp_tap_map[V4][port].sock = s < 0 ? -1 : s;
udp_splice_init[V4][port] = s < 0 ? -1 : s;
} else {
r4 = s = sock_l4(c, AF_INET, EPOLL_TYPE_UDP,
&in4addr_loopback,
ifname, port, uref.u32);
udp_splice_ns[V4][port] = s < 0 ? -1 : s;
}
}
if ((af == AF_INET6 || af == AF_UNSPEC) && c->ifi6) {
uref.v6 = 1;
if (!ns) {
r6 = s = sock_l4(c, AF_INET6, EPOLL_TYPE_UDP, addr,
ifname, port, uref.u32);
udp_tap_map[V6][port].sock = s < 0 ? -1 : s;
udp_splice_init[V6][port] = s < 0 ? -1 : s;
} else {
r6 = s = sock_l4(c, AF_INET6, EPOLL_TYPE_UDP,
&in6addr_loopback,
ifname, port, uref.u32);
udp_splice_ns[V6][port] = s < 0 ? -1 : s;
}
}
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* udp_splice_iov_init() - Set up buffers and descriptors for recvmmsg/sendmmsg
*/
static void udp_splice_iov_init(void)
{
int i;
for (i = 0; i < UDP_MAX_FRAMES; i++) {
struct msghdr *mh = &udp_mh_splice[i].msg_hdr;
mh->msg_name = &udp_splice_to;
mh->msg_namelen = sizeof(udp_splice_to);
udp_iov_splice[i].iov_base = udp_payload[i].data;
mh->msg_iov = &udp_iov_splice[i];
mh->msg_iovlen = 1;
}
}
/**
* udp_timer_one() - Handler for timed events on one port
* @c: Execution context
* @v6: Set for IPv6 connections
* @type: Socket type
* @port: Port number, host order
* @now: Current timestamp
*/
static void udp_timer_one(struct ctx *c, int v6, enum udp_act_type type,
in_port_t port, const struct timespec *now)
{
struct udp_tap_port *tp;
int *sockp = NULL;
switch (type) {
case UDP_ACT_TAP:
tp = &udp_tap_map[v6 ? V6 : V4][port];
if (now->tv_sec - tp->ts > UDP_CONN_TIMEOUT) {
sockp = &tp->sock;
tp->flags = 0;
}
break;
default:
return;
}
if (sockp && *sockp >= 0) {
int s = *sockp;
*sockp = -1;
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, s, NULL);
close(s);
bitmap_clear(udp_act[v6 ? V6 : V4][type], port);
}
}
/**
* udp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void udp_port_rebind(struct ctx *c, bool outbound)
{
int (*socks)[NUM_PORTS] = outbound ? udp_splice_ns : udp_splice_init;
const uint8_t *fmap
= outbound ? c->udp.fwd_out.f.map : c->udp.fwd_in.f.map;
const uint8_t *rmap
= outbound ? c->udp.fwd_in.f.map : c->udp.fwd_out.f.map;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[V4][port] >= 0) {
close(socks[V4][port]);
socks[V4][port] = -1;
}
if (socks[V6][port] >= 0) {
close(socks[V6][port]);
socks[V6][port] = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[V4][port] == -1) ||
(c->ifi6 && socks[V6][port] == -1))
udp_sock_init(c, outbound, AF_UNSPEC, NULL, NULL, port);
}
}
/**
* udp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int udp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
udp_port_rebind(c, true);
return 0;
}
/**
* udp_flow_timer() - Handler for timed events related to a given flow
* @c: Execution context
* @uflow: UDP flow
* @now: Current timestamp
*
* Return: true if the flow is ready to free, false otherwise
*/
bool udp_flow_timer(const struct ctx *c, struct udp_flow *uflow,
const struct timespec *now)
{
if (now->tv_sec - uflow->ts <= UDP_CONN_TIMEOUT)
return false;
udp_flow_close(c, uflow);
return true;
}
/**
* udp_timer() - Scan activity bitmaps for ports with associated timed events
* @c: Execution context
* @now: Current timestamp
*/
void udp_timer(struct ctx *c, const struct timespec *now)
{
int n, t, v6 = 0;
unsigned int i;
long *word, tmp;
ASSERT(!c->no_udp);
if (c->mode == MODE_PASTA) {
if (c->udp.fwd_out.f.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_out.f, &c->udp.fwd_in.f,
&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(udp_port_rebind_outbound, c);
}
if (c->udp.fwd_in.f.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_in.f, &c->udp.fwd_out.f,
&c->tcp.fwd_in, &c->tcp.fwd_out);
udp_port_rebind(c, false);
}
}
if (!c->ifi4)
v6 = 1;
v6:
for (t = 0; t < UDP_ACT_TYPE_MAX; t++) {
word = (long *)udp_act[v6 ? V6 : V4][t];
for (i = 0; i < ARRAY_SIZE(udp_act[0][0]);
i += sizeof(long), word++) {
tmp = *word;
while ((n = ffsl(tmp))) {
tmp &= ~(1UL << (n - 1));
udp_timer_one(c, v6, t, i * 8 + n - 1, now);
}
}
}
if (!v6 && c->ifi6) {
v6 = 1;
goto v6;
}
}
/**
* udp_init() - Initialise per-socket data, and sockets in namespace
* @c: Execution context
*
* Return: 0
*/
int udp_init(struct ctx *c)
{
ASSERT(!c->no_udp);
udp_iov_init(c);
udp_invert_portmap(&c->udp.fwd_in);
udp_invert_portmap(&c->udp.fwd_out);
if (c->mode == MODE_PASTA) {
udp_splice_iov_init();
NS_CALL(udp_port_rebind_outbound, c);
}
return 0;
}