1
0
mirror of https://passt.top/passt synced 2024-07-03 00:12:41 +00:00
passt/util.c
Stefano Brivio 8bca388e8a passt: Assorted fixes from "fresh eyes" review
A bunch of fixes not worth single commits at this stage, notably:

- make buffer, length parameter ordering consistent in ARP, DHCP,
  NDP handlers

- strict checking of buffer, message and option length in DHCP
  handler (a malicious client could have easily crashed it)

- set up forwarding for IPv4 and IPv6, and masquerading with nft for
  IPv4, from demo script

- get rid of separate slow and fast timers, we don't save any
  overhead that way

- stricter checking of buffer lengths as passed to tap handlers

- proper dequeuing from qemu socket back-end: I accidentally trashed
  messages that were bundled up together in a single tap read
  operation -- the length header tells us what's the size of the next
  frame, but there's no apparent limit to the number of messages we
  get with one single receive

- rework some bits of the TCP state machine, now passive and active
  connection closes appear to be robust -- introduce a new
  FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag
  from socket

- streamline TCP option parsing routine

- track TCP state changes to stderr (this is temporary, proper
  debugging and syslogging support pending)

- observe that multiplying a number by four might very well change
  its value, and this happens to be the case for the data offset
  from the TCP header as we check if it's the same as the total
  length to find out if it's a duplicated ACK segment

- recent estimates suggest that the duration of a millisecond is
  closer to a million nanoseconds than a thousand of them, this
  trend is now reflected into the timespec_diff_ms() convenience
  routine

Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:55:49 +01:00

225 lines
4.7 KiB
C

// SPDX-License-Identifier: AGPL-3.0-or-later
/* PASST - Plug A Simple Socket Transport
*
* util.c - Convenience helpers
*
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <unistd.h>
#include <linux/ipv6.h>
#include <arpa/inet.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <sys/epoll.h>
#include "passt.h"
/**
* csum_fold() - Fold long sum for IP and TCP checksum
* @sum: Original long sum
*
* Return: 16-bit folded sum
*/
uint16_t csum_fold(uint32_t sum)
{
while (sum >> 16)
sum = (sum & 0xffff) + (sum >> 16);
return sum;
}
/**
* csum_ipv4() - Calculate IPv4 checksum
* @buf: Packet buffer, L3 headers
* @len: Total L3 packet length
*
* Return: 16-bit IPv4-style checksum
*/
uint16_t csum_ip4(void *buf, size_t len)
{
uint32_t sum = 0;
uint16_t *p = buf;
size_t len1 = len / 2;
size_t off;
for (off = 0; off < len1; off++, p++)
sum += *p;
if (len % 2)
sum += *p & 0xff;
return ~csum_fold(sum);
}
/**
* csum_ipv4() - Calculate TCP checksum for IPv4 and set in place
* @iph: Packet buffer, IP header
*/
void csum_tcp4(struct iphdr *iph)
{
struct tcphdr *th = (struct tcphdr *)((char *)iph + iph->ihl * 4);
uint16_t tlen = ntohs(iph->tot_len) - iph->ihl * 4, *p = (uint16_t *)th;
uint32_t sum = 0;
sum += (iph->saddr >> 16) & 0xffff;
sum += iph->saddr & 0xffff;
sum += (iph->daddr >> 16) & 0xffff;
sum += iph->daddr & 0xffff;
sum += htons(IPPROTO_TCP);
sum += htons(tlen);
th->check = 0;
while (tlen > 1) {
sum += *p++;
tlen -= 2;
}
if (tlen > 0) {
sum += *p & htons(0xff00);
}
th->check = (uint16_t)~csum_fold(sum);
}
/**
* ipv6_l4hdr() - Find pointer to L4 header in IPv6 packet and extract protocol
* @ip6h: IPv6 header
* @proto: Filled with L4 protocol number
*
* Return: pointer to L4 header, NULL if not found
*/
char *ipv6_l4hdr(struct ipv6hdr *ip6h, uint8_t *proto)
{
int offset, len, hdrlen;
struct ipv6_opt_hdr *o;
uint8_t nh;
len = ntohs(ip6h->payload_len);
offset = 0;
while (offset < len) {
if (!offset) {
nh = ip6h->nexthdr;
hdrlen = sizeof(struct ipv6hdr);
} else {
nh = o->nexthdr;
hdrlen = (o->hdrlen + 1) * 8;
}
if (nh == 59)
return NULL;
if (nh == 0 || nh == 43 || nh == 44 || nh == 50 ||
nh == 51 || nh == 60 || nh == 135 || nh == 139 ||
nh == 140 || nh == 253 || nh == 254) {
offset += hdrlen;
o = (struct ipv6_opt_hdr *)(unsigned char *)ip6h +
offset;
} else {
*proto = nh;
return (char *)(ip6h + 1) + offset;
}
}
return NULL;
}
/**
* sock_l4_add() - Create and bind socket for given L4, add to epoll list
* @c: Execution context
* @v: IP protocol, 4 or 6
* @proto: Protocol number, host order
* @port: Port, network order
*
* Return: newly created socket, -1 on error
*/
int sock_l4_add(struct ctx *c, int v, uint16_t proto, uint16_t port)
{
struct sockaddr_in addr4 = {
.sin_family = AF_INET,
.sin_port = htons(port),
.sin_addr = { .s_addr = INADDR_ANY },
};
struct sockaddr_in6 addr6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(port),
.sin6_addr = IN6ADDR_ANY_INIT,
};
struct epoll_event ev = { 0 };
const struct sockaddr *sa;
int fd, sl, one = 1;
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
return -1; /* Not implemented. */
fd = socket(v == 4 ? AF_INET : AF_INET6,
proto == IPPROTO_TCP ? SOCK_STREAM : SOCK_DGRAM, proto);
if (fd < 0) {
perror("L4 socket");
return -1;
}
if (v == 4) {
sa = (const struct sockaddr *)&addr4;
sl = sizeof(addr4);
} else {
sa = (const struct sockaddr *)&addr6;
sl = sizeof(addr6);
setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one));
}
if (bind(fd, sa, sl) < 0) {
/* We'll fail to bind to low ports if we don't have enough
* capabilities, and we'll fail to bind on already bound ports,
* this is fine.
*/
close(fd);
return 0;
}
if (proto == IPPROTO_TCP && listen(fd, 128) < 0) {
perror("TCP socket listen");
close(fd);
return -1;
}
ev.events = EPOLLIN;
ev.data.fd = fd;
if (epoll_ctl(c->epollfd, EPOLL_CTL_ADD, fd, &ev) == -1) {
perror("L4 epoll_ctl");
return -1;
}
return fd;
}
/**
* timespec_diff_ms() - Report difference in milliseconds between two timestamps
* @a: Minuend timestamp
* @b: Subtrahend timestamp
*
* Return: difference in milliseconds
*/
int timespec_diff_ms(struct timespec *a, struct timespec *b)
{
if (a->tv_nsec < b->tv_nsec) {
return (b->tv_nsec - a->tv_nsec) / 1000000 +
(a->tv_sec - b->tv_sec - 1) * 1000;
}
return (a->tv_nsec - b->tv_nsec) / 1000000 +
(a->tv_sec - b->tv_sec) * 1000;
}