1
0
mirror of https://passt.top/passt synced 2024-12-22 05:35:23 +00:00
passt/tcp.c
Stefano Brivio 238c69f9af tcp: Acknowledge keep-alive segments, ignore them for the rest
RFC 9293, 3.8.4 says:

   Implementers MAY include "keep-alives" in their TCP implementations
   (MAY-5), although this practice is not universally accepted.  Some
   TCP implementations, however, have included a keep-alive mechanism.
   To confirm that an idle connection is still active, these
   implementations send a probe segment designed to elicit a response
   from the TCP peer.  Such a segment generally contains SEG.SEQ =
   SND.NXT-1 and may or may not contain one garbage octet of data.  If
   keep-alives are included, the application MUST be able to turn them
   on or off for each TCP connection (MUST-24), and they MUST default to
   off (MUST-25).

but currently, tcp_data_from_tap() is not aware of this and will
schedule a fast re-transmit on the second keep-alive (because it's
also a duplicate ACK), ignoring the fact that the sequence number was
rewinded to SND.NXT-1.

ACK these keep-alive segments, reset the activity timeout, and ignore
them for the rest.

At some point, we could think of implementing an approximation of
keep-alive segments on outbound sockets, for example by setting
TCP_KEEPIDLE to 1, and a large TCP_KEEPINTVL, so that we send a single
keep-alive segment at approximately the same time, and never reset the
connection. That's beyond the scope of this fix, though.

Reported-by: Tim Besard <tim.besard@gmail.com>
Link: https://github.com/containers/podman/discussions/24572
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-11-21 06:52:36 +01:00

2752 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* tcp.c - TCP L2-L4 translation state machine
*
* Copyright (c) 2020-2022 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
*
* PASST mode
* ==========
*
* This implementation maps TCP traffic between a single L2 interface (tap) and
* native TCP (L4) sockets, mimicking and reproducing as closely as possible the
* inferred behaviour of applications running on a guest, connected via said L2
* interface. Four connection flows are supported:
* - from the local host to the guest behind the tap interface:
* - this is the main use case for proxies in service meshes
* - we bind to configured local ports, and relay traffic between L4 sockets
* with local endpoints and the L2 interface
* - from remote hosts to the guest behind the tap interface:
* - this might be needed for services that need to be addressed directly,
* and typically configured with special port forwarding rules (which are
* not needed here)
* - we also relay traffic between L4 sockets with remote endpoints and the L2
* interface
* - from the guest to the local host:
* - this is not observed in practice, but implemented for completeness and
* transparency
* - from the guest to external hosts:
* - this might be needed for applications running on the guest that need to
* directly access internet services (e.g. NTP)
*
* Relevant goals are:
* - transparency: sockets need to behave as if guest applications were running
* directly on the host. This is achieved by:
* - avoiding port and address translations whenever possible
* - mirroring TCP dynamics by observation of socket parameters (TCP_INFO
* socket option) and TCP headers of packets coming from the tap interface,
* reapplying those parameters in both flow directions (including TCP_MSS
* socket option)
* - simplicity: only a small subset of TCP logic is implemented here and
* delegated as much as possible to the TCP implementations of guest and host
* kernel. This is achieved by:
* - avoiding a complete TCP stack reimplementation, with a modified TCP state
* machine focused on the translation of observed events instead
* - mirroring TCP dynamics as described above and hence avoiding the need for
* segmentation, explicit queueing, and reassembly of segments
* - security:
* - no dynamic memory allocation is performed
* - TODO: synflood protection
*
* Portability is limited by usage of Linux-specific socket options.
*
*
* Limits
* ------
*
* To avoid the need for dynamic memory allocation, a maximum, reasonable amount
* of connections is defined by TCP_MAX_CONNS (currently 128k).
*
* Data needs to linger on sockets as long as it's not acknowledged by the
* guest, and is read using MSG_PEEK into preallocated static buffers sized
* to the maximum supported window, 16 MiB ("discard" buffer, for already-sent
* data) plus a number of maximum-MSS-sized buffers. This imposes a practical
* limitation on window scaling, that is, the maximum factor is 256. Larger
* factors will be accepted, but resulting, larger values are never advertised
* to the other side, and not used while queueing data.
*
*
* Ports
* -----
*
* To avoid the need for ad-hoc configuration of port forwarding or allowed
* ports, listening sockets can be opened and bound to all unbound ports on the
* host, as far as process capabilities allow. This service needs to be started
* after any application proxy that needs to bind to local ports. Mapped ports
* can also be configured explicitly.
*
* No port translation is needed for connections initiated remotely or by the
* local host: source port from socket is reused while establishing connections
* to the guest.
*
* For connections initiated by the guest, it's not possible to force the same
* source port as connections are established by the host kernel: that's the
* only port translation needed.
*
*
* Connection tracking and storage
* -------------------------------
*
* Connections are tracked by struct tcp_tap_conn entries in the @tc
* array, containing addresses, ports, TCP states and parameters. This
* is statically allocated and indexed by an arbitrary connection
* number. The array is compacted whenever a connection is closed, by
* remapping the highest connection index in use to the one freed up.
*
* References used for the epoll interface report the connection index used for
* the @tc array.
*
* IPv4 addresses are stored as IPv4-mapped IPv6 addresses to avoid the need for
* separate data structures depending on the protocol version.
*
* - Inbound connection requests (to the guest) are mapped using the triple
* < source IP address, source port, destination port >
* - Outbound connection requests (from the guest) are mapped using the triple
* < destination IP address, destination port, source port >
* where the source port is the one used by the guest, not the one used by the
* corresponding host socket
*
*
* Initialisation
* --------------
*
* Up to 2^15 + 2^14 listening sockets (excluding ephemeral ports, repeated for
* IPv4 and IPv6) can be opened and bound to wildcard addresses. Some will fail
* to bind (for low ports, or ports already bound, e.g. by a proxy). These are
* added to the epoll list, with no separate storage.
*
*
* Events and states
* -----------------
*
* Instead of tracking connection states using a state machine, connection
* events are used to determine state and actions for a given connection. This
* makes the implementation simpler as most of the relevant tasks deal with
* reactions to events, rather than state-associated actions. For user
* convenience, approximate states are mapped in logs from events by
* @tcp_state_str.
*
* The events are:
*
* - SOCK_ACCEPTED connection accepted from socket, SYN sent to tap/guest
*
* - TAP_SYN_RCVD tap/guest initiated connection, SYN received
*
* - TAP_SYN_ACK_SENT SYN, ACK sent to tap/guest, valid for TAP_SYN_RCVD only
*
* - ESTABLISHED connection established, the following events are valid:
*
* - SOCK_FIN_RCVD FIN (EPOLLRDHUP) received from socket
*
* - SOCK_FIN_SENT FIN (write shutdown) sent to socket
*
* - TAP_FIN_RCVD FIN received from tap/guest
*
* - TAP_FIN_SENT FIN sent to tap/guest
*
* - TAP_FIN_ACKED ACK to FIN seen from tap/guest
*
* Setting any event in CONN_STATE_BITS (SOCK_ACCEPTED, TAP_SYN_RCVD,
* ESTABLISHED) clears all the other events, as those represent the fundamental
* connection states. No events (events == CLOSED) means the connection is
* closed.
*
* Connection setup
* ----------------
*
* - inbound connection (from socket to guest): on accept() from listening
* socket, the new socket is mapped in connection tracking table, and
* three-way handshake initiated towards the guest, advertising MSS and window
* size and scaling from socket parameters
* - outbound connection (from guest to socket): on SYN segment from guest, a
* new socket is created and mapped in connection tracking table, setting
* MSS and window clamping from header and option of the observed SYN segment
*
*
* Aging and timeout
* -----------------
*
* Timeouts are implemented by means of timerfd timers, set based on flags:
*
* - SYN_TIMEOUT: if no ACK is received from tap/guest during handshake (flag
* ACK_FROM_TAP_DUE without ESTABLISHED event) within this time, reset the
* connection
*
* - ACK_TIMEOUT: if no ACK segment was received from tap/guest, after sending
* data (flag ACK_FROM_TAP_DUE with ESTABLISHED event), re-send data from the
* socket and reset sequence to what was acknowledged. If this persists for
* more than TCP_MAX_RETRANS times in a row, reset the connection
*
* - FIN_TIMEOUT: if a FIN segment was sent to tap/guest (flag ACK_FROM_TAP_DUE
* with TAP_FIN_SENT event), and no ACK is received within this time, reset
* the connection
*
* - FIN_TIMEOUT: if a FIN segment was acknowledged by tap/guest and a FIN
* segment (write shutdown) was sent via socket (events SOCK_FIN_SENT and
* TAP_FIN_ACKED), but no socket activity is detected from the socket within
* this time, reset the connection
*
* - ACT_TIMEOUT, in the presence of any event: if no activity is detected on
* either side, the connection is reset
*
* - ACK_INTERVAL elapsed after data segment received from tap without having
* sent an ACK segment, or zero-sized window advertised to tap/guest (flag
* ACK_TO_TAP_DUE): forcibly check if an ACK segment can be sent
*
*
* Summary of data flows (with ESTABLISHED event)
* ----------------------------------------------
*
* @seq_to_tap: next sequence for packets to tap/guest
* @seq_ack_from_tap: last ACK number received from tap/guest
* @seq_from_tap: next sequence for packets from tap/guest (expected)
* @seq_ack_to_tap: last ACK number sent to tap/guest
*
* @seq_init_from_tap: initial sequence number from tap/guest
* @seq_init_to_tap: initial sequence number from tap/guest
*
* @wnd_from_tap: last window size received from tap, never scaled
* @wnd_from_tap: last window size advertised from tap, never scaled
*
* - from socket to tap/guest:
* - on new data from socket:
* - peek into buffer
* - send data to tap/guest:
* - starting at offset (@seq_to_tap - @seq_ack_from_tap)
* - in MSS-sized segments
* - increasing @seq_to_tap at each segment
* - up to window (until @seq_to_tap - @seq_ack_from_tap <= @wnd_from_tap)
* - on read error, send RST to tap/guest, close socket
* - on zero read, send FIN to tap/guest, set TAP_FIN_SENT
* - on ACK from tap/guest:
* - set @ts_ack_from_tap
* - check if it's the second duplicated ACK
* - consume buffer by difference between new ack_seq and @seq_ack_from_tap
* - update @seq_ack_from_tap from ack_seq in header
* - on two duplicated ACKs, reset @seq_to_tap to @seq_ack_from_tap, and
* resend with steps listed above
*
* - from tap/guest to socket:
* - on packet from tap/guest:
* - set @ts_tap_act
* - check seq from header against @seq_from_tap, if data is missing, send
* two ACKs with number @seq_ack_to_tap, discard packet
* - otherwise queue data to socket, set @seq_from_tap to seq from header
* plus payload length
* - in ESTABLISHED state, send ACK to tap as soon as we queue to the
* socket. In other states, query socket for TCP_INFO, set
* @seq_ack_to_tap to (tcpi_bytes_acked + @seq_init_from_tap) % 2^32 and
* send ACK to tap/guest
*
*
* PASTA mode
* ==========
*
* For traffic directed to TCP ports configured for mapping to the tuntap device
* in the namespace, and for non-local traffic coming from the tuntap device,
* the implementation is identical as the PASST mode described in the previous
* section.
*
* For local traffic directed to TCP ports configured for direct mapping between
* namespaces, see the implementation in tcp_splice.c.
*/
#include <sched.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <errno.h>
#include <limits.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <time.h>
#include <arpa/inet.h>
#include "checksum.h"
#include "util.h"
#include "iov.h"
#include "ip.h"
#include "passt.h"
#include "tap.h"
#include "siphash.h"
#include "pcap.h"
#include "tcp_splice.h"
#include "log.h"
#include "inany.h"
#include "flow.h"
#include "linux_dep.h"
#include "flow_table.h"
#include "tcp_internal.h"
#include "tcp_buf.h"
/* MSS rounding: see SET_MSS() */
#define MSS_DEFAULT 536
#define WINDOW_DEFAULT 14600 /* RFC 6928 */
#define ACK_INTERVAL 10 /* ms */
#define SYN_TIMEOUT 10 /* s */
#define ACK_TIMEOUT 2
#define FIN_TIMEOUT 60
#define ACT_TIMEOUT 7200
#define LOW_RTT_TABLE_SIZE 8
#define LOW_RTT_THRESHOLD 10 /* us */
#define ACK_IF_NEEDED 0 /* See tcp_send_flag() */
#define CONN_IS_CLOSING(conn) \
(((conn)->events & ESTABLISHED) && \
((conn)->events & (SOCK_FIN_RCVD | TAP_FIN_RCVD)))
#define CONN_HAS(conn, set) (((conn)->events & (set)) == (set))
static const char *tcp_event_str[] __attribute((__unused__)) = {
"SOCK_ACCEPTED", "TAP_SYN_RCVD", "ESTABLISHED", "TAP_SYN_ACK_SENT",
"SOCK_FIN_RCVD", "SOCK_FIN_SENT", "TAP_FIN_RCVD", "TAP_FIN_SENT",
"TAP_FIN_ACKED",
};
static const char *tcp_state_str[] __attribute((__unused__)) = {
"SYN_RCVD", "SYN_SENT", "ESTABLISHED",
"SYN_RCVD", /* approximately maps to TAP_SYN_ACK_SENT */
/* Passive close: */
"CLOSE_WAIT", "CLOSE_WAIT", "LAST_ACK", "LAST_ACK", "LAST_ACK",
/* Active close (+5): */
"CLOSING", "FIN_WAIT_1", "FIN_WAIT_1", "FIN_WAIT_2", "TIME_WAIT",
};
static const char *tcp_flag_str[] __attribute((__unused__)) = {
"STALLED", "LOCAL", "ACTIVE_CLOSE", "ACK_TO_TAP_DUE",
"ACK_FROM_TAP_DUE",
};
/* Listening sockets, used for automatic port forwarding in pasta mode only */
static int tcp_sock_init_ext [NUM_PORTS][IP_VERSIONS];
static int tcp_sock_ns [NUM_PORTS][IP_VERSIONS];
/* Table of our guest side addresses with very low RTT (assumed to be local to
* the host), LRU
*/
static union inany_addr low_rtt_dst[LOW_RTT_TABLE_SIZE];
char tcp_buf_discard [MAX_WINDOW];
/* Does the kernel support TCP_PEEK_OFF? */
bool peek_offset_cap;
/* Size of data returned by TCP_INFO getsockopt() */
socklen_t tcp_info_size;
#define tcp_info_cap(f_) \
((offsetof(struct tcp_info_linux, tcpi_##f_) + \
sizeof(((struct tcp_info_linux *)NULL)->tcpi_##f_)) <= tcp_info_size)
/* Kernel reports sending window in TCP_INFO (kernel commit 8f7baad7f035) */
#define snd_wnd_cap tcp_info_cap(snd_wnd)
/* Kernel reports bytes acked in TCP_INFO (kernel commit 0df48c26d84) */
#define bytes_acked_cap tcp_info_cap(bytes_acked)
/* Kernel reports minimum RTT in TCP_INFO (kernel commit cd9b266095f4) */
#define min_rtt_cap tcp_info_cap(min_rtt)
/* sendmsg() to socket */
static struct iovec tcp_iov [UIO_MAXIOV];
/* Pools for pre-opened sockets (in init) */
int init_sock_pool4 [TCP_SOCK_POOL_SIZE];
int init_sock_pool6 [TCP_SOCK_POOL_SIZE];
/**
* conn_at_sidx() - Get TCP connection specific flow at given sidx
* @sidx: Flow and side to retrieve
*
* Return: TCP connection at @sidx, or NULL of @sidx is invalid. Asserts if the
* flow at @sidx is not FLOW_TCP.
*/
static struct tcp_tap_conn *conn_at_sidx(flow_sidx_t sidx)
{
union flow *flow = flow_at_sidx(sidx);
if (!flow)
return NULL;
ASSERT(flow->f.type == FLOW_TCP);
return &flow->tcp;
}
/**
* tcp_set_peek_offset() - Set SO_PEEK_OFF offset on a socket if supported
* @s: Socket to update
* @offset: Offset in bytes
*
* Return: -1 when it fails, 0 otherwise.
*/
int tcp_set_peek_offset(int s, int offset)
{
if (!peek_offset_cap)
return 0;
if (setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &offset, sizeof(offset))) {
err("Failed to set SO_PEEK_OFF to %i in socket %i", offset, s);
return -1;
}
return 0;
}
/**
* tcp_conn_epoll_events() - epoll events mask for given connection state
* @events: Current connection events
* @conn_flags Connection flags
*
* Return: epoll events mask corresponding to implied connection state
*/
static uint32_t tcp_conn_epoll_events(uint8_t events, uint8_t conn_flags)
{
if (!events)
return 0;
if (events & ESTABLISHED) {
if (events & TAP_FIN_SENT)
return EPOLLET;
if (conn_flags & STALLED)
return EPOLLIN | EPOLLOUT | EPOLLRDHUP | EPOLLET;
return EPOLLIN | EPOLLRDHUP;
}
if (events == TAP_SYN_RCVD)
return EPOLLOUT | EPOLLET | EPOLLRDHUP;
return EPOLLET | EPOLLRDHUP;
}
/**
* tcp_epoll_ctl() - Add/modify/delete epoll state from connection events
* @c: Execution context
* @conn: Connection pointer
*
* Return: 0 on success, negative error code on failure (not on deletion)
*/
static int tcp_epoll_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
int m = conn->in_epoll ? EPOLL_CTL_MOD : EPOLL_CTL_ADD;
union epoll_ref ref = { .type = EPOLL_TYPE_TCP, .fd = conn->sock,
.flowside = FLOW_SIDX(conn, !TAPSIDE(conn)), };
struct epoll_event ev = { .data.u64 = ref.u64 };
if (conn->events == CLOSED) {
if (conn->in_epoll)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->sock, &ev);
if (conn->timer != -1)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->timer, &ev);
return 0;
}
ev.events = tcp_conn_epoll_events(conn->events, conn->flags);
if (epoll_ctl(c->epollfd, m, conn->sock, &ev))
return -errno;
conn->in_epoll = true;
if (conn->timer != -1) {
union epoll_ref ref_t = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev_t = { .data.u64 = ref_t.u64,
.events = EPOLLIN | EPOLLET };
if (epoll_ctl(c->epollfd, EPOLL_CTL_MOD, conn->timer, &ev_t))
return -errno;
}
return 0;
}
/**
* tcp_timer_ctl() - Set timerfd based on flags/events, create timerfd if needed
* @c: Execution context
* @conn: Connection pointer
*
* #syscalls timerfd_create timerfd_settime
*/
static void tcp_timer_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
struct itimerspec it = { { 0 }, { 0 } };
if (conn->events == CLOSED)
return;
if (conn->timer == -1) {
union epoll_ref ref = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev = { .data.u64 = ref.u64,
.events = EPOLLIN | EPOLLET };
int fd;
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd == -1 || fd > FD_REF_MAX) {
flow_dbg(conn, "failed to get timer: %s",
strerror(errno));
if (fd > -1)
close(fd);
conn->timer = -1;
return;
}
conn->timer = fd;
if (epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->timer, &ev)) {
flow_dbg(conn, "failed to add timer: %s",
strerror(errno));
close(conn->timer);
conn->timer = -1;
return;
}
}
if (conn->flags & ACK_TO_TAP_DUE) {
it.it_value.tv_nsec = (long)ACK_INTERVAL * 1000 * 1000;
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED))
it.it_value.tv_sec = SYN_TIMEOUT;
else
it.it_value.tv_sec = ACK_TIMEOUT;
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
it.it_value.tv_sec = FIN_TIMEOUT;
} else {
it.it_value.tv_sec = ACT_TIMEOUT;
}
flow_dbg(conn, "timer expires in %llu.%03llus",
(unsigned long long)it.it_value.tv_sec,
(unsigned long long)it.it_value.tv_nsec / 1000 / 1000);
if (timerfd_settime(conn->timer, 0, &it, NULL))
flow_err(conn, "failed to set timer: %s", strerror(errno));
}
/**
* conn_flag_do() - Set/unset given flag, log, update epoll on STALLED flag
* @c: Execution context
* @conn: Connection pointer
* @flag: Flag to set, or ~flag to unset
*/
void conn_flag_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long flag)
{
if (flag & (flag - 1)) {
int flag_index = fls(~flag);
if (!(conn->flags & ~flag))
return;
conn->flags &= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s dropped", tcp_flag_str[flag_index]);
} else {
int flag_index = fls(flag);
if (conn->flags & flag) {
/* Special case: setting ACK_FROM_TAP_DUE on a
* connection where it's already set is used to
* re-schedule the existing timer.
* TODO: define clearer semantics for timer-related
* flags and factor this into the logic below.
*/
if (flag == ACK_FROM_TAP_DUE)
tcp_timer_ctl(c, conn);
return;
}
conn->flags |= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s", tcp_flag_str[flag_index]);
}
if (flag == STALLED || flag == ~STALLED)
tcp_epoll_ctl(c, conn);
if (flag == ACK_FROM_TAP_DUE || flag == ACK_TO_TAP_DUE ||
(flag == ~ACK_FROM_TAP_DUE && (conn->flags & ACK_TO_TAP_DUE)) ||
(flag == ~ACK_TO_TAP_DUE && (conn->flags & ACK_FROM_TAP_DUE)))
tcp_timer_ctl(c, conn);
}
/**
* conn_event_do() - Set and log connection events, update epoll state
* @c: Execution context
* @conn: Connection pointer
* @event: Connection event
*/
void conn_event_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long event)
{
int prev, new, num = fls(event);
if (conn->events & event)
return;
prev = fls(conn->events);
if (conn->flags & ACTIVE_CLOSE)
prev += 5;
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED))
prev++; /* i.e. SOCK_FIN_RCVD, not TAP_SYN_ACK_SENT */
if (event == CLOSED || (event & CONN_STATE_BITS))
conn->events = event;
else
conn->events |= event;
new = fls(conn->events);
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED)) {
num++;
new++;
}
if (conn->flags & ACTIVE_CLOSE)
new += 5;
if (prev != new)
flow_dbg(conn, "%s: %s -> %s",
num == -1 ? "CLOSED" : tcp_event_str[num],
prev == -1 ? "CLOSED" : tcp_state_str[prev],
(new == -1 || num == -1) ? "CLOSED" : tcp_state_str[new]);
else
flow_dbg(conn, "%s",
num == -1 ? "CLOSED" : tcp_event_str[num]);
if (event == CLOSED)
flow_hash_remove(c, TAP_SIDX(conn));
else if ((event == TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_RCVD))
conn_flag(c, conn, ACTIVE_CLOSE);
else
tcp_epoll_ctl(c, conn);
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
tcp_timer_ctl(c, conn);
}
/**
* tcp_rtt_dst_low() - Check if low RTT was seen for connection endpoint
* @conn: Connection pointer
*
* Return: 1 if destination is in low RTT table, 0 otherwise
*/
static int tcp_rtt_dst_low(const struct tcp_tap_conn *conn)
{
const struct flowside *tapside = TAPFLOW(conn);
int i;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++)
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return 1;
return 0;
}
/**
* tcp_rtt_dst_check() - Check tcpi_min_rtt, insert endpoint in table if low
* @conn: Connection pointer
* @tinfo: Pointer to struct tcp_info for socket
*/
static void tcp_rtt_dst_check(const struct tcp_tap_conn *conn,
const struct tcp_info_linux *tinfo)
{
const struct flowside *tapside = TAPFLOW(conn);
int i, hole = -1;
if (!min_rtt_cap ||
(int)tinfo->tcpi_min_rtt > LOW_RTT_THRESHOLD)
return;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++) {
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return;
if (hole == -1 && IN6_IS_ADDR_UNSPECIFIED(low_rtt_dst + i))
hole = i;
}
/* Keep gcc 12 happy: this won't actually happen because the table is
* guaranteed to have a hole, see the second memcpy() below.
*/
if (hole == -1)
return;
low_rtt_dst[hole++] = tapside->oaddr;
if (hole == LOW_RTT_TABLE_SIZE)
hole = 0;
inany_from_af(low_rtt_dst + hole, AF_INET6, &in6addr_any);
}
/**
* tcp_get_sndbuf() - Get, scale SO_SNDBUF between thresholds (1 to 0.5 usage)
* @conn: Connection pointer
*/
static void tcp_get_sndbuf(struct tcp_tap_conn *conn)
{
int s = conn->sock, sndbuf;
socklen_t sl;
uint64_t v;
sl = sizeof(sndbuf);
if (getsockopt(s, SOL_SOCKET, SO_SNDBUF, &sndbuf, &sl)) {
SNDBUF_SET(conn, WINDOW_DEFAULT);
return;
}
v = sndbuf;
if (v >= SNDBUF_BIG)
v /= 2;
else if (v > SNDBUF_SMALL)
v -= v * (v - SNDBUF_SMALL) / (SNDBUF_BIG - SNDBUF_SMALL) / 2;
SNDBUF_SET(conn, MIN(INT_MAX, v));
}
/**
* tcp_sock_set_bufsize() - Set SO_RCVBUF and SO_SNDBUF to maximum values
* @s: Socket, can be -1 to avoid check in the caller
*/
static void tcp_sock_set_bufsize(const struct ctx *c, int s)
{
int v = INT_MAX / 2; /* Kernel clamps and rounds, no need to check */
if (s == -1)
return;
if (!c->low_rmem && setsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_RCVBUF to %i", v);
if (!c->low_wmem && setsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_SNDBUF to %i", v);
}
/**
* tcp_update_check_tcp4() - Calculate TCP checksum for IPv4
* @iph: IPv4 header
* @iov: Pointer to the array of IO vectors
* @iov_cnt: Length of the array
* @l4offset: IPv4 payload offset in the iovec array
*/
static void tcp_update_check_tcp4(const struct iphdr *iph,
const struct iovec *iov, int iov_cnt,
size_t l4offset)
{
uint16_t l4len = ntohs(iph->tot_len) - sizeof(struct iphdr);
struct in_addr saddr = { .s_addr = iph->saddr };
struct in_addr daddr = { .s_addr = iph->daddr };
size_t check_ofs;
uint16_t *check;
int check_idx;
uint32_t sum;
char *ptr;
sum = proto_ipv4_header_psum(l4len, IPPROTO_TCP, saddr, daddr);
check_idx = iov_skip_bytes(iov, iov_cnt,
l4offset + offsetof(struct tcphdr, check),
&check_ofs);
if (check_idx >= iov_cnt) {
err("TCP4 buffer is too small, iov size %zd, check offset %zd",
iov_size(iov, iov_cnt),
l4offset + offsetof(struct tcphdr, check));
return;
}
if (check_ofs + sizeof(*check) > iov[check_idx].iov_len) {
err("TCP4 checksum field memory is not contiguous "
"check_ofs %zd check_idx %d iov_len %zd",
check_ofs, check_idx, iov[check_idx].iov_len);
return;
}
ptr = (char *)iov[check_idx].iov_base + check_ofs;
if ((uintptr_t)ptr & (__alignof__(*check) - 1)) {
err("TCP4 checksum field is not correctly aligned in memory");
return;
}
check = (uint16_t *)ptr;
*check = 0;
*check = csum_iov(iov, iov_cnt, l4offset, sum);
}
/**
* tcp_update_check_tcp6() - Calculate TCP checksum for IPv6
* @ip6h: IPv6 header
* @iov: Pointer to the array of IO vectors
* @iov_cnt: Length of the array
* @l4offset: IPv6 payload offset in the iovec array
*/
static void tcp_update_check_tcp6(const struct ipv6hdr *ip6h,
const struct iovec *iov, int iov_cnt,
size_t l4offset)
{
uint16_t l4len = ntohs(ip6h->payload_len);
size_t check_ofs;
uint16_t *check;
int check_idx;
uint32_t sum;
char *ptr;
sum = proto_ipv6_header_psum(l4len, IPPROTO_TCP, &ip6h->saddr,
&ip6h->daddr);
check_idx = iov_skip_bytes(iov, iov_cnt,
l4offset + offsetof(struct tcphdr, check),
&check_ofs);
if (check_idx >= iov_cnt) {
err("TCP6 buffer is too small, iov size %zd, check offset %zd",
iov_size(iov, iov_cnt),
l4offset + offsetof(struct tcphdr, check));
return;
}
if (check_ofs + sizeof(*check) > iov[check_idx].iov_len) {
err("TCP6 checksum field memory is not contiguous "
"check_ofs %zd check_idx %d iov_len %zd",
check_ofs, check_idx, iov[check_idx].iov_len);
return;
}
ptr = (char *)iov[check_idx].iov_base + check_ofs;
if ((uintptr_t)ptr & (__alignof__(*check) - 1)) {
err("TCP6 checksum field is not correctly aligned in memory");
return;
}
check = (uint16_t *)ptr;
*check = 0;
*check = csum_iov(iov, iov_cnt, l4offset, sum);
}
/**
* tcp_opt_get() - Get option, and value if any, from TCP header
* @opts: Pointer to start of TCP options in header
* @len: Length of buffer, excluding TCP header -- NOT checked here!
* @type_find: Option type to look for
* @optlen_set: Optional, filled with option length if passed
* @value_set: Optional, set to start of option value if passed
*
* Return: option value, meaningful for up to 4 bytes, -1 if not found
*/
static int tcp_opt_get(const char *opts, size_t len, uint8_t type_find,
uint8_t *optlen_set, const char **value_set)
{
uint8_t type, optlen;
if (!opts || !len)
return -1;
for (; len >= 2; opts += optlen, len -= optlen) {
switch (*opts) {
case OPT_EOL:
return -1;
case OPT_NOP:
optlen = 1;
break;
default:
type = *(opts++);
if (*(uint8_t *)opts < 2 || *(uint8_t *)opts > len)
return -1;
optlen = *(opts++) - 2;
len -= 2;
if (type != type_find)
break;
if (optlen_set)
*optlen_set = optlen;
if (value_set)
*value_set = opts;
switch (optlen) {
case 0:
return 0;
case 1:
return *opts;
case 2:
return ntohs(*(uint16_t *)opts);
default:
return ntohl(*(uint32_t *)opts);
}
}
}
return -1;
}
/**
* tcp_flow_defer() - Deferred per-flow handling (clean up closed connections)
* @conn: Connection to handle
*
* Return: true if the connection is ready to free, false otherwise
*/
bool tcp_flow_defer(const struct tcp_tap_conn *conn)
{
if (conn->events != CLOSED)
return false;
close(conn->sock);
if (conn->timer != -1)
close(conn->timer);
return true;
}
/**
* tcp_defer_handler() - Handler for TCP deferred tasks
* @c: Execution context
*/
/* cppcheck-suppress [constParameterPointer, unmatchedSuppression] */
void tcp_defer_handler(struct ctx *c)
{
tcp_payload_flush(c);
}
/**
* tcp_fill_header() - Fill the TCP header fields for a given TCP segment.
*
* @th: Pointer to the TCP header structure
* @conn: Pointer to the TCP connection structure
* @seq: Sequence number
*/
static void tcp_fill_header(struct tcphdr *th,
const struct tcp_tap_conn *conn, uint32_t seq)
{
const struct flowside *tapside = TAPFLOW(conn);
th->source = htons(tapside->oport);
th->dest = htons(tapside->eport);
th->seq = htonl(seq);
th->ack_seq = htonl(conn->seq_ack_to_tap);
if (conn->events & ESTABLISHED) {
th->window = htons(conn->wnd_to_tap);
} else {
unsigned wnd = conn->wnd_to_tap << conn->ws_to_tap;
th->window = htons(MIN(wnd, USHRT_MAX));
}
}
/**
* tcp_fill_headers4() - Fill 802.3, IPv4, TCP headers in pre-cooked buffers
* @conn: Connection pointer
* @taph: tap backend specific header
* @iph: Pointer to IPv4 header
* @bp: Pointer to TCP header followed by TCP payload
* @dlen: TCP payload length
* @check: Checksum, if already known
* @seq: Sequence number for this segment
* @no_tcp_csum: Do not set TCP checksum
*
* Return: The IPv4 payload length, host order
*/
static size_t tcp_fill_headers4(const struct tcp_tap_conn *conn,
struct tap_hdr *taph,
struct iphdr *iph, struct tcp_payload_t *bp,
size_t dlen, const uint16_t *check,
uint32_t seq, bool no_tcp_csum)
{
const struct flowside *tapside = TAPFLOW(conn);
const struct in_addr *src4 = inany_v4(&tapside->oaddr);
const struct in_addr *dst4 = inany_v4(&tapside->eaddr);
size_t l4len = dlen + sizeof(bp->th);
size_t l3len = l4len + sizeof(*iph);
ASSERT(src4 && dst4);
iph->tot_len = htons(l3len);
iph->saddr = src4->s_addr;
iph->daddr = dst4->s_addr;
iph->check = check ? *check :
csum_ip4_header(l3len, IPPROTO_TCP, *src4, *dst4);
tcp_fill_header(&bp->th, conn, seq);
if (no_tcp_csum) {
bp->th.check = 0;
} else {
const struct iovec iov = {
.iov_base = bp,
.iov_len = ntohs(iph->tot_len) - sizeof(struct iphdr),
};
tcp_update_check_tcp4(iph, &iov, 1, 0);
}
tap_hdr_update(taph, l3len + sizeof(struct ethhdr));
return l4len;
}
/**
* tcp_fill_headers6() - Fill 802.3, IPv6, TCP headers in pre-cooked buffers
* @conn: Connection pointer
* @taph: tap backend specific header
* @ip6h: Pointer to IPv6 header
* @bp: Pointer to TCP header followed by TCP payload
* @dlen: TCP payload length
* @check: Checksum, if already known
* @seq: Sequence number for this segment
* @no_tcp_csum: Do not set TCP checksum
*
* Return: The IPv6 payload length, host order
*/
static size_t tcp_fill_headers6(const struct tcp_tap_conn *conn,
struct tap_hdr *taph,
struct ipv6hdr *ip6h, struct tcp_payload_t *bp,
size_t dlen, uint32_t seq, bool no_tcp_csum)
{
const struct flowside *tapside = TAPFLOW(conn);
size_t l4len = dlen + sizeof(bp->th);
ip6h->payload_len = htons(l4len);
ip6h->saddr = tapside->oaddr.a6;
ip6h->daddr = tapside->eaddr.a6;
ip6h->hop_limit = 255;
ip6h->version = 6;
ip6h->nexthdr = IPPROTO_TCP;
ip6h->flow_lbl[0] = (conn->sock >> 16) & 0xf;
ip6h->flow_lbl[1] = (conn->sock >> 8) & 0xff;
ip6h->flow_lbl[2] = (conn->sock >> 0) & 0xff;
tcp_fill_header(&bp->th, conn, seq);
if (no_tcp_csum) {
bp->th.check = 0;
} else {
const struct iovec iov = {
.iov_base = bp,
.iov_len = ntohs(ip6h->payload_len)
};
tcp_update_check_tcp6(ip6h, &iov, 1, 0);
}
tap_hdr_update(taph, l4len + sizeof(*ip6h) + sizeof(struct ethhdr));
return l4len;
}
/**
* tcp_l2_buf_fill_headers() - Fill 802.3, IP, TCP headers in pre-cooked buffers
* @conn: Connection pointer
* @iov: Pointer to an array of iovec of TCP pre-cooked buffers
* @dlen: TCP payload length
* @check: Checksum, if already known
* @seq: Sequence number for this segment
* @no_tcp_csum: Do not set TCP checksum
*
* Return: IP payload length, host order
*/
size_t tcp_l2_buf_fill_headers(const struct tcp_tap_conn *conn,
struct iovec *iov, size_t dlen,
const uint16_t *check, uint32_t seq,
bool no_tcp_csum)
{
const struct flowside *tapside = TAPFLOW(conn);
const struct in_addr *a4 = inany_v4(&tapside->oaddr);
if (a4) {
return tcp_fill_headers4(conn, iov[TCP_IOV_TAP].iov_base,
iov[TCP_IOV_IP].iov_base,
iov[TCP_IOV_PAYLOAD].iov_base, dlen,
check, seq, no_tcp_csum);
}
return tcp_fill_headers6(conn, iov[TCP_IOV_TAP].iov_base,
iov[TCP_IOV_IP].iov_base,
iov[TCP_IOV_PAYLOAD].iov_base, dlen,
seq, no_tcp_csum);
}
/**
* tcp_update_seqack_wnd() - Update ACK sequence and window to guest/tap
* @c: Execution context
* @conn: Connection pointer
* @force_seq: Force ACK sequence to latest segment, instead of checking socket
* @tinfo: tcp_info from kernel, can be NULL if not pre-fetched
*
* Return: 1 if sequence or window were updated, 0 otherwise
*/
int tcp_update_seqack_wnd(const struct ctx *c, struct tcp_tap_conn *conn,
bool force_seq, struct tcp_info_linux *tinfo)
{
uint32_t prev_wnd_to_tap = conn->wnd_to_tap << conn->ws_to_tap;
uint32_t prev_ack_to_tap = conn->seq_ack_to_tap;
/* cppcheck-suppress [ctunullpointer, unmatchedSuppression] */
socklen_t sl = sizeof(*tinfo);
struct tcp_info_linux tinfo_new;
uint32_t new_wnd_to_tap = prev_wnd_to_tap;
int s = conn->sock;
if (!bytes_acked_cap) {
conn->seq_ack_to_tap = conn->seq_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
} else {
if ((unsigned)SNDBUF_GET(conn) < SNDBUF_SMALL ||
tcp_rtt_dst_low(conn) || CONN_IS_CLOSING(conn) ||
(conn->flags & LOCAL) || force_seq) {
conn->seq_ack_to_tap = conn->seq_from_tap;
} else if (conn->seq_ack_to_tap != conn->seq_from_tap) {
if (!tinfo) {
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl))
return 0;
}
conn->seq_ack_to_tap = tinfo->tcpi_bytes_acked +
conn->seq_init_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
}
}
if (!snd_wnd_cap) {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN(SNDBUF_GET(conn), MAX_WINDOW);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap,
USHRT_MAX);
goto out;
}
if (!tinfo) {
if (prev_wnd_to_tap > WINDOW_DEFAULT) {
goto out;
}
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl)) {
goto out;
}
}
if ((conn->flags & LOCAL) || tcp_rtt_dst_low(conn)) {
new_wnd_to_tap = tinfo->tcpi_snd_wnd;
} else {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN((int)tinfo->tcpi_snd_wnd,
SNDBUF_GET(conn));
}
new_wnd_to_tap = MIN(new_wnd_to_tap, MAX_WINDOW);
if (!(conn->events & ESTABLISHED))
new_wnd_to_tap = MAX(new_wnd_to_tap, WINDOW_DEFAULT);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap, USHRT_MAX);
/* Certain cppcheck versions, e.g. 2.12.0 have a bug where they think
* the MIN() above restricts conn->wnd_to_tap to be zero. That's
* clearly incorrect, but until the bug is fixed, work around it.
* https://bugzilla.redhat.com/show_bug.cgi?id=2240705
* https://sourceforge.net/p/cppcheck/discussion/general/thread/f5b1a00646/
*/
/* cppcheck-suppress [knownConditionTrueFalse, unmatchedSuppression] */
if (!conn->wnd_to_tap)
conn_flag(c, conn, ACK_TO_TAP_DUE);
out:
return new_wnd_to_tap != prev_wnd_to_tap ||
conn->seq_ack_to_tap != prev_ack_to_tap;
}
/**
* tcp_update_seqack_from_tap() - ACK number from tap and related flags/counters
* @c: Execution context
* @conn: Connection pointer
* @seq Current ACK sequence, host order
*/
static void tcp_update_seqack_from_tap(const struct ctx *c,
struct tcp_tap_conn *conn, uint32_t seq)
{
if (seq == conn->seq_to_tap)
conn_flag(c, conn, ~ACK_FROM_TAP_DUE);
if (SEQ_GT(seq, conn->seq_ack_from_tap)) {
/* Forward progress, but more data to acknowledge: reschedule */
if (SEQ_LT(seq, conn->seq_to_tap))
conn_flag(c, conn, ACK_FROM_TAP_DUE);
conn->retrans = 0;
conn->seq_ack_from_tap = seq;
}
}
/**
* tcp_prepare_flags() - Prepare header for flags-only segment (no payload)
* @c: Execution context
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
* @th: TCP header to update
* @data: buffer to store TCP option
* @optlen: size of the TCP option buffer (output parameter)
*
* Return: < 0 error code on connection reset,
* 0 if there is no flag to send
* 1 otherwise
*/
int tcp_prepare_flags(const struct ctx *c, struct tcp_tap_conn *conn,
int flags, struct tcphdr *th, struct tcp_syn_opts *opts,
size_t *optlen)
{
struct tcp_info_linux tinfo = { 0 };
socklen_t sl = sizeof(tinfo);
int s = conn->sock;
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap) &&
!flags && conn->wnd_to_tap) {
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
return 0;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
conn_event(c, conn, CLOSED);
return -ECONNRESET;
}
if (!(conn->flags & LOCAL))
tcp_rtt_dst_check(conn, &tinfo);
if (!tcp_update_seqack_wnd(c, conn, !!flags, &tinfo) && !flags)
return 0;
*optlen = 0;
if (flags & SYN) {
int mss;
if (c->mtu == -1) {
mss = tinfo.tcpi_snd_mss;
} else {
mss = c->mtu - sizeof(struct tcphdr);
if (CONN_V4(conn))
mss -= sizeof(struct iphdr);
else
mss -= sizeof(struct ipv6hdr);
if (c->low_wmem &&
!(conn->flags & LOCAL) && !tcp_rtt_dst_low(conn))
mss = MIN(mss, PAGE_SIZE);
else if (mss > PAGE_SIZE)
mss = ROUND_DOWN(mss, PAGE_SIZE);
}
conn->ws_to_tap = MIN(MAX_WS, tinfo.tcpi_snd_wscale);
*opts = TCP_SYN_OPTS(mss, conn->ws_to_tap);
*optlen = sizeof(*opts);
} else if (!(flags & RST)) {
flags |= ACK;
}
th->doff = (sizeof(*th) + *optlen) / 4;
th->ack = !!(flags & ACK);
th->rst = !!(flags & RST);
th->syn = !!(flags & SYN);
th->fin = !!(flags & FIN);
if (th->ack) {
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap))
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
else
conn_flag(c, conn, ACK_TO_TAP_DUE);
}
if (th->fin)
conn_flag(c, conn, ACK_FROM_TAP_DUE);
/* RFC 793, 3.1: "[...] and the first data octet is ISN+1." */
if (th->fin || th->syn)
conn->seq_to_tap++;
return 1;
}
/**
* tcp_send_flag() - Send segment with flags to tap (no payload)
* @c: Execution context
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
*
* Return: negative error code on connection reset, 0 otherwise
*/
static int tcp_send_flag(const struct ctx *c, struct tcp_tap_conn *conn,
int flags)
{
return tcp_buf_send_flag(c, conn, flags);
}
/**
* tcp_rst_do() - Reset a tap connection: send RST segment to tap, close socket
* @c: Execution context
* @conn: Connection pointer
*/
void tcp_rst_do(const struct ctx *c, struct tcp_tap_conn *conn)
{
if (conn->events == CLOSED)
return;
if (!tcp_send_flag(c, conn, RST))
conn_event(c, conn, CLOSED);
}
/**
* tcp_get_tap_ws() - Get Window Scaling option for connection from tap/guest
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_get_tap_ws(struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
{
int ws = tcp_opt_get(opts, optlen, OPT_WS, NULL, NULL);
if (ws >= 0 && ws <= TCP_WS_MAX)
conn->ws_from_tap = ws;
else
conn->ws_from_tap = 0;
}
/**
* tcp_tap_window_update() - Process an updated window from tap side
* @conn: Connection pointer
* @window: Window value, host order, unscaled
*/
static void tcp_tap_window_update(struct tcp_tap_conn *conn, unsigned wnd)
{
wnd = MIN(MAX_WINDOW, wnd << conn->ws_from_tap);
/* Work-around for bug introduced in peer kernel code, commit
* e2142825c120 ("net: tcp: send zero-window ACK when no memory").
* We don't update if window shrank to zero.
*/
if (!wnd && SEQ_LT(conn->seq_ack_from_tap, conn->seq_to_tap))
return;
conn->wnd_from_tap = MIN(wnd >> conn->ws_from_tap, USHRT_MAX);
/* FIXME: reflect the tap-side receiver's window back to the sock-side
* sender by adjusting SO_RCVBUF? */
}
/**
* tcp_init_seq() - Calculate initial sequence number according to RFC 6528
* @hash: Hash of connection details
* @now: Current timestamp
*/
static uint32_t tcp_init_seq(uint64_t hash, const struct timespec *now)
{
/* 32ns ticks, overflows 32 bits every 137s */
uint32_t ns = (now->tv_sec * 1000000000 + now->tv_nsec) >> 5;
return ((uint32_t)(hash >> 32) ^ (uint32_t)hash) + ns;
}
/**
* tcp_conn_pool_sock() - Get socket for new connection from pre-opened pool
* @pool: Pool of pre-opened sockets
*
* Return: socket number if available, negative code if pool is empty
*/
int tcp_conn_pool_sock(int pool[])
{
int s = -1, i;
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
SWAP(s, pool[i]);
if (s >= 0)
return s;
}
return -1;
}
/**
* tcp_conn_new_sock() - Open and prepare new socket for connection
* @c: Execution context
* @af: Address family
*
* Return: socket number on success, negative code if socket creation failed
*/
static int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
{
int s;
s = socket(af, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_TCP);
if (s > FD_REF_MAX) {
close(s);
return -EIO;
}
if (s < 0)
return -errno;
tcp_sock_set_bufsize(c, s);
return s;
}
/**
* tcp_conn_sock() - Obtain a connectable socket in the host/init namespace
* @c: Execution context
* @af: Address family (AF_INET or AF_INET6)
*
* Return: Socket fd on success, -errno on failure
*/
int tcp_conn_sock(const struct ctx *c, sa_family_t af)
{
int *pool = af == AF_INET6 ? init_sock_pool6 : init_sock_pool4;
int s;
if ((s = tcp_conn_pool_sock(pool)) >= 0)
return s;
/* If the pool is empty we just open a new one without refilling the
* pool to keep latency down.
*/
if ((s = tcp_conn_new_sock(c, af)) >= 0)
return s;
err("TCP: Unable to open socket for new connection: %s",
strerror(-s));
return -1;
}
/**
* tcp_conn_tap_mss() - Get MSS value advertised by tap/guest
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*
* Return: clamped MSS value
*/
static uint16_t tcp_conn_tap_mss(const struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
{
unsigned int mss;
int ret;
if ((ret = tcp_opt_get(opts, optlen, OPT_MSS, NULL, NULL)) < 0)
mss = MSS_DEFAULT;
else
mss = ret;
if (CONN_V4(conn))
mss = MIN(MSS4, mss);
else
mss = MIN(MSS6, mss);
return MIN(mss, USHRT_MAX);
}
/**
* tcp_bind_outbound() - Bind socket to outbound address and interface if given
* @c: Execution context
* @conn: Connection entry for socket to bind
* @s: Outbound TCP socket
*/
static void tcp_bind_outbound(const struct ctx *c,
const struct tcp_tap_conn *conn, int s)
{
const struct flowside *tgt = &conn->f.side[TGTSIDE];
union sockaddr_inany bind_sa;
socklen_t sl;
pif_sockaddr(c, &bind_sa, &sl, PIF_HOST, &tgt->oaddr, tgt->oport);
if (!inany_is_unspecified(&tgt->oaddr) || tgt->oport) {
if (bind(s, &bind_sa.sa, sl)) {
char sstr[INANY_ADDRSTRLEN];
flow_dbg(conn,
"Can't bind TCP outbound socket to %s:%hu: %s",
inany_ntop(&tgt->oaddr, sstr, sizeof(sstr)),
tgt->oport, strerror(errno));
}
}
if (bind_sa.sa_family == AF_INET) {
if (*c->ip4.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip4.ifname_out,
strlen(c->ip4.ifname_out))) {
flow_dbg(conn, "Can't bind IPv4 TCP socket to"
" interface %s: %s", c->ip4.ifname_out,
strerror(errno));
}
}
} else if (bind_sa.sa_family == AF_INET6) {
if (*c->ip6.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip6.ifname_out,
strlen(c->ip6.ifname_out))) {
flow_dbg(conn, "Can't bind IPv6 TCP socket to"
" interface %s: %s", c->ip6.ifname_out,
strerror(errno));
}
}
}
}
/**
* tcp_conn_from_tap() - Handle connection request (SYN segment) from tap
* @c: Execution context
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address, pointer to in_addr or in6_addr
* @daddr: Destination address, pointer to in_addr or in6_addr
* @th: TCP header from tap: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
* @now: Current timestamp
*/
static void tcp_conn_from_tap(const struct ctx *c, sa_family_t af,
const void *saddr, const void *daddr,
const struct tcphdr *th, const char *opts,
size_t optlen, const struct timespec *now)
{
in_port_t srcport = ntohs(th->source);
in_port_t dstport = ntohs(th->dest);
const struct flowside *ini, *tgt;
struct tcp_tap_conn *conn;
union sockaddr_inany sa;
union flow *flow;
int s = -1, mss;
uint64_t hash;
socklen_t sl;
if (!(flow = flow_alloc()))
return;
ini = flow_initiate_af(flow, PIF_TAP,
af, saddr, srcport, daddr, dstport);
if (!(tgt = flow_target(c, flow, IPPROTO_TCP)))
goto cancel;
if (flow->f.pif[TGTSIDE] != PIF_HOST) {
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0 ||
!inany_is_unicast(&ini->oaddr) || ini->oport == 0) {
char sstr[INANY_ADDRSTRLEN], dstr[INANY_ADDRSTRLEN];
debug("Invalid endpoint in TCP SYN: %s:%hu -> %s:%hu",
inany_ntop(&ini->eaddr, sstr, sizeof(sstr)), ini->eport,
inany_ntop(&ini->oaddr, dstr, sizeof(dstr)), ini->oport);
goto cancel;
}
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
pif_sockaddr(c, &sa, &sl, PIF_HOST, &tgt->eaddr, tgt->eport);
/* Use bind() to check if the target address is local (EADDRINUSE or
* similar) and already bound, and set the LOCAL flag in that case.
*
* If bind() succeeds, in general, we could infer that nobody (else) is
* listening on that address and port and reset the connection attempt
* early, but we can't rely on that if non-local binds are enabled,
* because bind() would succeed for any non-local address we can reach.
*
* So, if bind() succeeds, close the socket, get a new one, and proceed.
*/
if (bind(s, &sa.sa, sl)) {
if (errno != EADDRNOTAVAIL && errno != EACCES)
conn_flag(c, conn, LOCAL);
} else {
/* Not a local, bound destination, inconclusive test */
close(s);
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
}
conn->sock = s;
conn->timer = -1;
conn_event(c, conn, TAP_SYN_RCVD);
conn->wnd_to_tap = WINDOW_DEFAULT;
mss = tcp_conn_tap_mss(conn, opts, optlen);
if (setsockopt(s, SOL_TCP, TCP_MAXSEG, &mss, sizeof(mss)))
flow_trace(conn, "failed to set TCP_MAXSEG on socket %i", s);
MSS_SET(conn, mss);
tcp_get_tap_ws(conn, opts, optlen);
/* RFC 7323, 2.2: first value is not scaled. Also, don't clamp yet, to
* avoid getting a zero scale just because we set a small window now.
*/
if (!(conn->wnd_from_tap = (htons(th->window) >> conn->ws_from_tap)))
conn->wnd_from_tap = 1;
conn->seq_init_from_tap = ntohl(th->seq);
conn->seq_from_tap = conn->seq_init_from_tap + 1;
conn->seq_ack_to_tap = conn->seq_from_tap;
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
conn->seq_ack_from_tap = conn->seq_to_tap;
tcp_bind_outbound(c, conn, s);
if (connect(s, &sa.sa, sl)) {
if (errno != EINPROGRESS) {
tcp_rst(c, conn);
goto cancel;
}
tcp_get_sndbuf(conn);
} else {
tcp_get_sndbuf(conn);
if (tcp_send_flag(c, conn, SYN | ACK))
goto cancel;
conn_event(c, conn, TAP_SYN_ACK_SENT);
}
tcp_epoll_ctl(c, conn);
FLOW_ACTIVATE(conn);
return;
cancel:
if (s >= 0)
close(s);
flow_alloc_cancel(flow);
}
/**
* tcp_sock_consume() - Consume (discard) data from buffer
* @conn: Connection pointer
* @ack_seq: ACK sequence, host order
*
* Return: 0 on success, negative error code from recv() on failure
*/
#ifdef VALGRIND
/* valgrind doesn't realise that passing a NULL buffer to recv() is ok if using
* MSG_TRUNC. We have a suppression for this in the tests, but it relies on
* valgrind being able to see the tcp_sock_consume() stack frame, which it won't
* if this gets inlined. This has a single caller making it a likely inlining
* candidate, and certain compiler versions will do so even at -O0.
*/
__attribute__((noinline))
#endif /* VALGRIND */
static int tcp_sock_consume(const struct tcp_tap_conn *conn, uint32_t ack_seq)
{
/* Simply ignore out-of-order ACKs: we already consumed the data we
* needed from the buffer, and we won't rewind back to a lower ACK
* sequence.
*/
if (SEQ_LE(ack_seq, conn->seq_ack_from_tap))
return 0;
/* cppcheck-suppress [nullPointer, unmatchedSuppression] */
if (recv(conn->sock, NULL, ack_seq - conn->seq_ack_from_tap,
MSG_DONTWAIT | MSG_TRUNC) < 0)
return -errno;
return 0;
}
/**
* tcp_data_from_sock() - Handle new data from socket, queue to tap, in window
* @c: Execution context
* @conn: Connection pointer
*
* Return: negative on connection reset, 0 otherwise
*
* #syscalls recvmsg
*/
static int tcp_data_from_sock(const struct ctx *c, struct tcp_tap_conn *conn)
{
return tcp_buf_data_from_sock(c, conn);
}
/**
* tcp_data_from_tap() - tap/guest data for established connection
* @c: Execution context
* @conn: Connection pointer
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first data packet in pool
*
* #syscalls sendmsg
*
* Return: count of consumed packets
*/
static int tcp_data_from_tap(const struct ctx *c, struct tcp_tap_conn *conn,
const struct pool *p, int idx)
{
int i, iov_i, ack = 0, fin = 0, retr = 0, keep = -1, partial_send = 0;
uint16_t max_ack_seq_wnd = conn->wnd_from_tap;
uint32_t max_ack_seq = conn->seq_ack_from_tap;
uint32_t seq_from_tap = conn->seq_from_tap;
struct msghdr mh = { .msg_iov = tcp_iov };
size_t len;
ssize_t n;
if (conn->events == CLOSED)
return p->count - idx;
ASSERT(conn->events & ESTABLISHED);
for (i = idx, iov_i = 0; i < (int)p->count; i++) {
uint32_t seq, seq_offset, ack_seq;
const struct tcphdr *th;
char *data;
size_t off;
th = packet_get(p, i, 0, sizeof(*th), &len);
if (!th)
return -1;
len += sizeof(*th);
off = th->doff * 4UL;
if (off < sizeof(*th) || off > len)
return -1;
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
}
len -= off;
data = packet_get(p, i, off, len, NULL);
if (!data)
continue;
seq = ntohl(th->seq);
if (SEQ_LT(seq, conn->seq_from_tap) && len <= 1) {
flow_trace(conn,
"keep-alive sequence: %u, previous: %u",
seq, conn->seq_from_tap);
tcp_send_flag(c, conn, ACK);
tcp_timer_ctl(c, conn);
if (p->count == 1)
return 1;
continue;
}
ack_seq = ntohl(th->ack_seq);
if (th->ack) {
ack = 1;
if (SEQ_GE(ack_seq, conn->seq_ack_from_tap) &&
SEQ_GE(ack_seq, max_ack_seq)) {
/* Fast re-transmit */
retr = !len && !th->fin &&
ack_seq == max_ack_seq &&
ntohs(th->window) == max_ack_seq_wnd;
max_ack_seq_wnd = ntohs(th->window);
max_ack_seq = ack_seq;
}
}
if (th->fin)
fin = 1;
if (!len)
continue;
seq_offset = seq_from_tap - seq;
/* Use data from this buffer only in these two cases:
*
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '----' <-- offset ' <-- offset
* ^ seq ^ seq
* (offset >= 0, seq + len > seq_from_tap)
*
* discard in these two cases:
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '--------' <-- offset '-----| <- offset
* ^ seq ^ seq
* (offset >= 0, seq + len <= seq_from_tap)
*
* keep, look for another buffer, then go back, in this case:
* , seq_from_tap
* |--------| <-- len
* '===' <-- offset
* ^ seq
* (offset < 0)
*/
if (SEQ_GE(seq_offset, 0) && SEQ_LE(seq + len, seq_from_tap))
continue;
if (SEQ_LT(seq_offset, 0)) {
if (keep == -1)
keep = i;
continue;
}
tcp_iov[iov_i].iov_base = data + seq_offset;
tcp_iov[iov_i].iov_len = len - seq_offset;
seq_from_tap += tcp_iov[iov_i].iov_len;
iov_i++;
if (keep == i)
keep = -1;
if (keep != -1)
i = keep - 1;
}
/* On socket flush failure, pretend there was no ACK, try again later */
if (ack && !tcp_sock_consume(conn, max_ack_seq))
tcp_update_seqack_from_tap(c, conn, max_ack_seq);
tcp_tap_window_update(conn, max_ack_seq_wnd);
if (retr) {
flow_trace(conn,
"fast re-transmit, ACK: %u, previous sequence: %u",
max_ack_seq, conn->seq_to_tap);
conn->seq_to_tap = max_ack_seq;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return -1;
}
tcp_data_from_sock(c, conn);
}
if (!iov_i)
goto out;
mh.msg_iovlen = iov_i;
eintr:
n = sendmsg(conn->sock, &mh, MSG_DONTWAIT | MSG_NOSIGNAL);
if (n < 0) {
if (errno == EPIPE) {
/* Here's the wrap, said the tap.
* In my pocket, said the socket.
* Then swiftly looked away and left.
*/
conn->seq_from_tap = seq_from_tap;
tcp_send_flag(c, conn, ACK);
}
if (errno == EINTR)
goto eintr;
if (errno == EAGAIN || errno == EWOULDBLOCK) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
return p->count - idx;
}
return -1;
}
if (n < (int)(seq_from_tap - conn->seq_from_tap)) {
partial_send = 1;
conn->seq_from_tap += n;
tcp_send_flag(c, conn, ACK_IF_NEEDED);
} else {
conn->seq_from_tap += n;
}
out:
if (keep != -1) {
/* We use an 8-bit approximation here: the associated risk is
* that we skip a duplicate ACK on 8-bit sequence number
* collision. Fast retransmit is a SHOULD in RFC 5681, 3.2.
*/
if (conn->seq_dup_ack_approx != (conn->seq_from_tap & 0xff)) {
conn->seq_dup_ack_approx = conn->seq_from_tap & 0xff;
tcp_send_flag(c, conn, ACK | DUP_ACK);
}
return p->count - idx;
}
if (ack && conn->events & TAP_FIN_SENT &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, TAP_FIN_ACKED);
if (fin && !partial_send) {
conn->seq_from_tap++;
conn_event(c, conn, TAP_FIN_RCVD);
} else {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
}
return p->count - idx;
}
/**
* tcp_conn_from_sock_finish() - Complete connection setup after connect()
* @c: Execution context
* @conn: Connection pointer
* @th: TCP header of SYN, ACK segment: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_conn_from_sock_finish(const struct ctx *c,
struct tcp_tap_conn *conn,
const struct tcphdr *th,
const char *opts, size_t optlen)
{
tcp_tap_window_update(conn, ntohs(th->window));
tcp_get_tap_ws(conn, opts, optlen);
/* First value is not scaled */
if (!(conn->wnd_from_tap >>= conn->ws_from_tap))
conn->wnd_from_tap = 1;
MSS_SET(conn, tcp_conn_tap_mss(conn, opts, optlen));
conn->seq_init_from_tap = ntohl(th->seq) + 1;
conn->seq_from_tap = conn->seq_init_from_tap;
conn->seq_ack_to_tap = conn->seq_from_tap;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return;
}
tcp_send_flag(c, conn, ACK);
/* The client might have sent data already, which we didn't
* dequeue waiting for SYN,ACK from tap -- check now.
*/
tcp_data_from_sock(c, conn);
}
/**
* tcp_tap_handler() - Handle packets from tap and state transitions
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first packet in pool to process
* @now: Current timestamp
*
* Return: count of consumed packets
*/
int tcp_tap_handler(const struct ctx *c, uint8_t pif, sa_family_t af,
const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
{
struct tcp_tap_conn *conn;
const struct tcphdr *th;
size_t optlen, len;
const char *opts;
union flow *flow;
flow_sidx_t sidx;
int ack_due = 0;
int count;
(void)pif;
th = packet_get(p, idx, 0, sizeof(*th), &len);
if (!th)
return 1;
len += sizeof(*th);
optlen = th->doff * 4UL - sizeof(*th);
/* Static checkers might fail to see this: */
optlen = MIN(optlen, ((1UL << 4) /* from doff width */ - 6) * 4UL);
opts = packet_get(p, idx, sizeof(*th), optlen, NULL);
sidx = flow_lookup_af(c, IPPROTO_TCP, PIF_TAP, af, saddr, daddr,
ntohs(th->source), ntohs(th->dest));
flow = flow_at_sidx(sidx);
/* New connection from tap */
if (!flow) {
if (opts && th->syn && !th->ack)
tcp_conn_from_tap(c, af, saddr, daddr, th,
opts, optlen, now);
return 1;
}
ASSERT(flow->f.type == FLOW_TCP);
ASSERT(pif_at_sidx(sidx) == PIF_TAP);
conn = &flow->tcp;
flow_trace(conn, "packet length %zu from tap", len);
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
}
if (th->ack && !(conn->events & ESTABLISHED))
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
/* Establishing connection from socket */
if (conn->events & SOCK_ACCEPTED) {
if (th->syn && th->ack && !th->fin) {
tcp_conn_from_sock_finish(c, conn, th, opts, optlen);
return 1;
}
goto reset;
}
/* Establishing connection from tap */
if (conn->events & TAP_SYN_RCVD) {
if (!(conn->events & TAP_SYN_ACK_SENT))
goto reset;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0))
goto reset;
if (th->fin) {
conn->seq_from_tap++;
shutdown(conn->sock, SHUT_WR);
tcp_send_flag(c, conn, ACK);
conn_event(c, conn, SOCK_FIN_SENT);
return 1;
}
if (!th->ack)
goto reset;
tcp_tap_window_update(conn, ntohs(th->window));
tcp_data_from_sock(c, conn);
if (p->count - idx == 1)
return 1;
}
/* Established connections not accepting data from tap */
if (conn->events & TAP_FIN_RCVD) {
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
if (conn->events & SOCK_FIN_RCVD &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, CLOSED);
return 1;
}
/* Established connections accepting data from tap */
count = tcp_data_from_tap(c, conn, p, idx);
if (count == -1)
goto reset;
conn_flag(c, conn, ~STALLED);
if (conn->seq_ack_to_tap != conn->seq_from_tap)
ack_due = 1;
if ((conn->events & TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_SENT)) {
shutdown(conn->sock, SHUT_WR);
conn_event(c, conn, SOCK_FIN_SENT);
tcp_send_flag(c, conn, ACK);
ack_due = 0;
}
if (ack_due)
conn_flag(c, conn, ACK_TO_TAP_DUE);
return count;
reset:
/* Something's gone wrong, so reset the connection. We discard
* remaining packets in the batch, since they'd be invalidated when our
* RST is received, even if otherwise good.
*/
tcp_rst(c, conn);
return p->count - idx;
}
/**
* tcp_connect_finish() - Handle completion of connect() from EPOLLOUT event
* @c: Execution context
* @conn: Connection pointer
*/
static void tcp_connect_finish(const struct ctx *c, struct tcp_tap_conn *conn)
{
socklen_t sl;
int so;
sl = sizeof(so);
if (getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, &so, &sl) || so) {
tcp_rst(c, conn);
return;
}
if (tcp_send_flag(c, conn, SYN | ACK))
return;
conn_event(c, conn, TAP_SYN_ACK_SENT);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
}
/**
* tcp_tap_conn_from_sock() - Initialize state for non-spliced connection
* @c: Execution context
* @flow: flow to initialise
* @s: Accepted socket
* @sa: Peer socket address (from accept())
* @now: Current timestamp
*/
static void tcp_tap_conn_from_sock(const struct ctx *c, union flow *flow,
int s, const struct timespec *now)
{
struct tcp_tap_conn *conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
uint64_t hash;
conn->sock = s;
conn->timer = -1;
conn->ws_to_tap = conn->ws_from_tap = 0;
conn_event(c, conn, SOCK_ACCEPTED);
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
conn->seq_ack_from_tap = conn->seq_to_tap;
conn->wnd_from_tap = WINDOW_DEFAULT;
tcp_send_flag(c, conn, SYN);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
tcp_get_sndbuf(conn);
FLOW_ACTIVATE(conn);
}
/**
* tcp_listen_handler() - Handle new connection request from listening socket
* @c: Execution context
* @ref: epoll reference of listening socket
* @now: Current timestamp
*/
void tcp_listen_handler(const struct ctx *c, union epoll_ref ref,
const struct timespec *now)
{
const struct flowside *ini;
union sockaddr_inany sa;
socklen_t sl = sizeof(sa);
union flow *flow;
int s;
ASSERT(!c->no_tcp);
if (!(flow = flow_alloc()))
return;
s = accept4(ref.fd, &sa.sa, &sl, SOCK_NONBLOCK);
if (s < 0)
goto cancel;
/* FIXME: When listening port has a specific bound address, record that
* as our address
*/
ini = flow_initiate_sa(flow, ref.tcp_listen.pif, &sa,
ref.tcp_listen.port);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0) {
char sastr[SOCKADDR_STRLEN];
err("Invalid endpoint from TCP accept(): %s",
sockaddr_ntop(&sa, sastr, sizeof(sastr)));
goto cancel;
}
if (!flow_target(c, flow, IPPROTO_TCP))
goto cancel;
switch (flow->f.pif[TGTSIDE]) {
case PIF_SPLICE:
case PIF_HOST:
tcp_splice_conn_from_sock(c, flow, s);
break;
case PIF_TAP:
tcp_tap_conn_from_sock(c, flow, s, now);
break;
default:
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
return;
cancel:
flow_alloc_cancel(flow);
}
/**
* tcp_timer_handler() - timerfd events: close, send ACK, retransmit, or reset
* @c: Execution context
* @ref: epoll reference of timer (not connection)
*
* #syscalls timerfd_gettime arm:timerfd_gettime64 i686:timerfd_gettime64
*/
void tcp_timer_handler(const struct ctx *c, union epoll_ref ref)
{
struct itimerspec check_armed = { { 0 }, { 0 } };
struct tcp_tap_conn *conn = &FLOW(ref.flow)->tcp;
ASSERT(!c->no_tcp);
ASSERT(conn->f.type == FLOW_TCP);
/* We don't reset timers on ~ACK_FROM_TAP_DUE, ~ACK_TO_TAP_DUE. If the
* timer is currently armed, this event came from a previous setting,
* and we just set the timer to a new point in the future: discard it.
*/
if (timerfd_gettime(conn->timer, &check_armed))
flow_err(conn, "failed to read timer: %s", strerror(errno));
if (check_armed.it_value.tv_sec || check_armed.it_value.tv_nsec)
return;
if (conn->flags & ACK_TO_TAP_DUE) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
tcp_timer_ctl(c, conn);
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED)) {
flow_dbg(conn, "handshake timeout");
tcp_rst(c, conn);
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
flow_dbg(conn, "FIN timeout");
tcp_rst(c, conn);
} else if (conn->retrans == TCP_MAX_RETRANS) {
flow_dbg(conn, "retransmissions count exceeded");
tcp_rst(c, conn);
} else {
flow_dbg(conn, "ACK timeout, retry");
conn->retrans++;
conn->seq_to_tap = conn->seq_ack_from_tap;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
} else {
tcp_data_from_sock(c, conn);
tcp_timer_ctl(c, conn);
}
}
} else {
struct itimerspec new = { { 0 }, { ACT_TIMEOUT, 0 } };
struct itimerspec old = { { 0 }, { 0 } };
/* Activity timeout: if it was already set, reset the
* connection, otherwise, it was a left-over from ACK_TO_TAP_DUE
* or ACK_FROM_TAP_DUE, so just set the long timeout in that
* case. This avoids having to preemptively reset the timer on
* ~ACK_TO_TAP_DUE or ~ACK_FROM_TAP_DUE.
*/
if (timerfd_settime(conn->timer, 0, &new, &old))
flow_err(conn, "failed to set timer: %s",
strerror(errno));
if (old.it_value.tv_sec == ACT_TIMEOUT) {
flow_dbg(conn, "activity timeout");
tcp_rst(c, conn);
}
}
}
/**
* tcp_sock_handler() - Handle new data from non-spliced socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
*/
void tcp_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events)
{
struct tcp_tap_conn *conn = conn_at_sidx(ref.flowside);
ASSERT(!c->no_tcp);
ASSERT(pif_at_sidx(ref.flowside) != PIF_TAP);
if (conn->events == CLOSED)
return;
if (events & EPOLLERR) {
tcp_rst(c, conn);
return;
}
if ((conn->events & TAP_FIN_SENT) && (events & EPOLLHUP)) {
conn_event(c, conn, CLOSED);
return;
}
if (conn->events & ESTABLISHED) {
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
conn_event(c, conn, CLOSED);
if (events & (EPOLLRDHUP | EPOLLHUP))
conn_event(c, conn, SOCK_FIN_RCVD);
if (events & EPOLLIN)
tcp_data_from_sock(c, conn);
if (events & EPOLLOUT)
tcp_update_seqack_wnd(c, conn, false, NULL);
return;
}
/* EPOLLHUP during handshake: reset */
if (events & EPOLLHUP) {
tcp_rst(c, conn);
return;
}
/* Data during handshake tap-side: check later */
if (conn->events & SOCK_ACCEPTED)
return;
if (conn->events == TAP_SYN_RCVD) {
if (events & EPOLLOUT)
tcp_connect_finish(c, conn);
/* Data? Check later */
}
}
/**
* tcp_sock_init_one() - Initialise listening socket for address and port
* @c: Execution context
* @addr: Pointer to address for binding, NULL for dual stack any
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: fd for the new listening socket, negative error code on failure
*/
static int tcp_sock_init_one(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_HOST,
};
int s;
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_HOST, addr,
ifname, port, tref.u32);
if (c->tcp.fwd_in.mode == FWD_AUTO) {
if (!addr || inany_v4(addr))
tcp_sock_init_ext[port][V4] = s < 0 ? -1 : s;
if (!addr || !inany_v4(addr))
tcp_sock_init_ext[port][V6] = s < 0 ? -1 : s;
}
if (s < 0)
return s;
tcp_sock_set_bufsize(c, s);
return s;
}
/**
* tcp_sock_init() - Create listening sockets for a given host ("inbound") port
* @c: Execution context
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int tcp_sock_init(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
int r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
ASSERT(!c->no_tcp);
if (!addr && c->ifi4 && c->ifi6)
/* Attempt to get a dual stack socket */
if (tcp_sock_init_one(c, NULL, ifname, port) >= 0)
return 0;
/* Otherwise create a socket per IP version */
if ((!addr || inany_v4(addr)) && c->ifi4)
r4 = tcp_sock_init_one(c, addr ? addr : &inany_any4,
ifname, port);
if ((!addr || !inany_v4(addr)) && c->ifi6)
r6 = tcp_sock_init_one(c, addr ? addr : &inany_any6,
ifname, port);
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* tcp_ns_sock_init4() - Init socket to listen for outbound IPv4 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init4(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback4,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V4] = s;
}
/**
* tcp_ns_sock_init6() - Init socket to listen for outbound IPv6 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init6(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback6,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V6] = s;
}
/**
* tcp_ns_sock_init() - Init socket to listen for spliced outbound connections
* @c: Execution context
* @port: Port, host order
*/
void tcp_ns_sock_init(const struct ctx *c, in_port_t port)
{
ASSERT(!c->no_tcp);
if (c->ifi4)
tcp_ns_sock_init4(c, port);
if (c->ifi6)
tcp_ns_sock_init6(c, port);
}
/**
* tcp_ns_socks_init() - Bind sockets in namespace for outbound connections
* @arg: Execution context
*
* Return: 0
*/
/* cppcheck-suppress [constParameterCallback, unmatchedSuppression] */
static int tcp_ns_socks_init(void *arg)
{
const struct ctx *c = (const struct ctx *)arg;
unsigned port;
ns_enter(c);
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(c->tcp.fwd_out.map, port))
continue;
tcp_ns_sock_init(c, port);
}
return 0;
}
/**
* tcp_sock_refill_pool() - Refill one pool of pre-opened sockets
* @c: Execution context
* @pool: Pool of sockets to refill
* @af: Address family to use
*
* Return: 0 on success, negative error code if there was at least one error
*/
int tcp_sock_refill_pool(const struct ctx *c, int pool[], sa_family_t af)
{
int i;
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
int fd;
if (pool[i] >= 0)
continue;
if ((fd = tcp_conn_new_sock(c, af)) < 0)
return fd;
pool[i] = fd;
}
return 0;
}
/**
* tcp_sock_refill_init() - Refill pools of pre-opened sockets in init ns
* @c: Execution context
*/
static void tcp_sock_refill_init(const struct ctx *c)
{
if (c->ifi4) {
int rc = tcp_sock_refill_pool(c, init_sock_pool4, AF_INET);
if (rc < 0)
warn("TCP: Error refilling IPv4 host socket pool: %s",
strerror(-rc));
}
if (c->ifi6) {
int rc = tcp_sock_refill_pool(c, init_sock_pool6, AF_INET6);
if (rc < 0)
warn("TCP: Error refilling IPv6 host socket pool: %s",
strerror(-rc));
}
}
/**
* tcp_probe_peek_offset_cap() - Check if SO_PEEK_OFF is supported by kernel
* @af: Address family, IPv4 or IPv6
*
* Return: true if supported, false otherwise
*/
static bool tcp_probe_peek_offset_cap(sa_family_t af)
{
bool ret = false;
int s, optv = 0;
s = socket(af, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
} else {
if (!setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &optv, sizeof(int)))
ret = true;
close(s);
}
return ret;
}
/**
* tcp_probe_tcp_info() - Check what data TCP_INFO reports
*
* Return: Number of bytes returned by TCP_INFO getsockopt()
*/
static socklen_t tcp_probe_tcp_info(void)
{
struct tcp_info_linux tinfo;
socklen_t sl = sizeof(tinfo);
int s;
s = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
return false;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
warn_perror("Failed to get TCP_INFO on temporary socket");
close(s);
return false;
}
close(s);
return sl;
}
/**
* tcp_init() - Get initial sequence, hash secret, initialise per-socket data
* @c: Execution context
*
* Return: 0, doesn't return on failure
*/
int tcp_init(struct ctx *c)
{
ASSERT(!c->no_tcp);
tcp_sock_iov_init(c);
memset(init_sock_pool4, 0xff, sizeof(init_sock_pool4));
memset(init_sock_pool6, 0xff, sizeof(init_sock_pool6));
memset(tcp_sock_init_ext, 0xff, sizeof(tcp_sock_init_ext));
memset(tcp_sock_ns, 0xff, sizeof(tcp_sock_ns));
tcp_sock_refill_init(c);
if (c->mode == MODE_PASTA) {
tcp_splice_init(c);
NS_CALL(tcp_ns_socks_init, c);
}
peek_offset_cap = (!c->ifi4 || tcp_probe_peek_offset_cap(AF_INET)) &&
(!c->ifi6 || tcp_probe_peek_offset_cap(AF_INET6));
debug("SO_PEEK_OFF%ssupported", peek_offset_cap ? " " : " not ");
tcp_info_size = tcp_probe_tcp_info();
#define dbg_tcpi(f_) debug("TCP_INFO tcpi_%s field%s supported", \
STRINGIFY(f_), tcp_info_cap(f_) ? " " : " not ")
dbg_tcpi(snd_wnd);
dbg_tcpi(bytes_acked);
dbg_tcpi(min_rtt);
#undef dbg_tcpi
return 0;
}
/**
* tcp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void tcp_port_rebind(struct ctx *c, bool outbound)
{
const uint8_t *fmap = outbound ? c->tcp.fwd_out.map : c->tcp.fwd_in.map;
const uint8_t *rmap = outbound ? c->tcp.fwd_in.map : c->tcp.fwd_out.map;
int (*socks)[IP_VERSIONS] = outbound ? tcp_sock_ns : tcp_sock_init_ext;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[port][V4] >= 0) {
close(socks[port][V4]);
socks[port][V4] = -1;
}
if (socks[port][V6] >= 0) {
close(socks[port][V6]);
socks[port][V6] = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[port][V4] == -1) ||
(c->ifi6 && socks[port][V6] == -1)) {
if (outbound)
tcp_ns_sock_init(c, port);
else
tcp_sock_init(c, NULL, NULL, port);
}
}
}
/**
* tcp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int tcp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
tcp_port_rebind(c, true);
return 0;
}
/**
* tcp_timer() - Periodic tasks: port detection, closed connections, pool refill
* @c: Execution context
* @now: Current timestamp
*/
void tcp_timer(struct ctx *c, const struct timespec *now)
{
(void)now;
if (c->mode == MODE_PASTA) {
if (c->tcp.fwd_out.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(tcp_port_rebind_outbound, c);
}
if (c->tcp.fwd_in.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_in, &c->tcp.fwd_out);
tcp_port_rebind(c, false);
}
}
tcp_sock_refill_init(c);
if (c->mode == MODE_PASTA)
tcp_splice_refill(c);
}