1
0
mirror of https://passt.top/passt synced 2024-12-31 10:05:28 +00:00
passt/udp.c
Stefano Brivio b1a607fba1 udp: Take care of cert-int09-c clang-tidy warning for enum udp_iov_idx
/home/sbrivio/passt/udp.c:171:1: error: inital values in enum 'udp_iov_idx' are not consistent, consider explicit initialization of all, none or only the first enumerator [cert-int09-c,readability-enum-initial-value,-warnings-as-errors]
  171 | enum udp_iov_idx {
      | ^
  172 |         UDP_IOV_TAP     = 0,
  173 |         UDP_IOV_ETH     = 1,
  174 |         UDP_IOV_IP      = 2,
  175 |         UDP_IOV_PAYLOAD = 3,
  176 |         UDP_NUM_IOVS
      |
      |                      = 4

Don't initialise any value, so that it's obvious that constants map to
unique values.

Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-10-30 12:37:31 +01:00

986 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* udp.c - UDP L2-L4 translation routines
*
* Copyright (c) 2020-2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
* UDP Flows
* =========
*
* UDP doesn't have true connections, but many protocols use a connection-like
* format. The flow is initiated by a client sending a datagram from a port of
* its choosing (usually ephemeral) to a specific port (usually well known) on a
* server. Both client and server address must be unicast. The server sends
* replies using the same addresses & ports with src/dest swapped.
*
* We track pseudo-connections of this type as flow table entries of type
* FLOW_UDP. We store the time of the last traffic on the flow in uflow->ts,
* and let the flow expire if there is no traffic for UDP_CONN_TIMEOUT seconds.
*
* NOTE: This won't handle multicast protocols, or some protocols with different
* port usage. We'll need specific logic if we want to handle those.
*
* "Listening" sockets
* ===================
*
* UDP doesn't use listen(), but we consider long term sockets which are allowed
* to create new flows "listening" by analogy with TCP. This listening socket
* could receive packets from multiple flows, so we use a hash table match to
* find the specific flow for a datagram.
*
* When a UDP flow is initiated from a listening socket we take a duplicate of
* the socket and store it in uflow->s[INISIDE]. This will last for the
* lifetime of the flow, even if the original listening socket is closed due to
* port auto-probing. The duplicate is used to deliver replies back to the
* originating side.
*
* Reply sockets
* =============
*
* When a UDP flow targets a socket, we create a "reply" socket in
* uflow->s[TGTSIDE] both to deliver datagrams to the target side and receive
* replies on the target side. This socket is both bound and connected and has
* EPOLL_TYPE_UDP_REPLY. The connect() means it will only receive datagrams
* associated with this flow, so the epoll reference directly points to the flow
* and we don't need a hash lookup.
*
* NOTE: it's possible that the reply socket could have a bound address
* overlapping with an unrelated listening socket. We assume datagrams for the
* flow will come to the reply socket in preference to a listening socket. The
* sample program doc/platform-requirements/reuseaddr-priority.c documents and
* tests that assumption.
*
* "Spliced" flows
* ===============
*
* In PASTA mode, L2-L4 translation is skipped for connections to ports bound
* between namespaces using the loopback interface, messages are directly
* transferred between L4 sockets instead. These are called spliced connections
* in analogy with the TCP implementation. The the splice() syscall isn't
* actually used; it doesn't make sense for datagrams and instead a pair of
* recvmmsg() and sendmmsg() is used to forward the datagrams.
*
* Note that a spliced flow will have *both* a duplicated listening socket and a
* reply socket (see above).
*/
#include <sched.h>
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <limits.h>
#include <assert.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <time.h>
#include <arpa/inet.h>
#include <linux/errqueue.h>
#include "checksum.h"
#include "util.h"
#include "iov.h"
#include "ip.h"
#include "siphash.h"
#include "inany.h"
#include "passt.h"
#include "tap.h"
#include "pcap.h"
#include "log.h"
#include "flow_table.h"
#define UDP_MAX_FRAMES 32 /* max # of frames to receive at once */
/* "Spliced" sockets indexed by bound port (host order) */
static int udp_splice_ns [IP_VERSIONS][NUM_PORTS];
static int udp_splice_init[IP_VERSIONS][NUM_PORTS];
/* Static buffers */
/**
* struct udp_payload_t - UDP header and data for inbound messages
* @uh: UDP header
* @data: UDP data
*/
static struct udp_payload_t {
struct udphdr uh;
char data[USHRT_MAX - sizeof(struct udphdr)];
#ifdef __AVX2__
} __attribute__ ((packed, aligned(32)))
#else
} __attribute__ ((packed, aligned(__alignof__(unsigned int))))
#endif
udp_payload[UDP_MAX_FRAMES];
/* Ethernet header for IPv4 frames */
static struct ethhdr udp4_eth_hdr;
/* Ethernet header for IPv6 frames */
static struct ethhdr udp6_eth_hdr;
/**
* struct udp_meta_t - Pre-cooked headers and metadata for UDP packets
* @ip6h: Pre-filled IPv6 header (except for payload_len and addresses)
* @ip4h: Pre-filled IPv4 header (except for tot_len and saddr)
* @taph: Tap backend specific header
* @s_in: Source socket address, filled in by recvmmsg()
* @tosidx: sidx for the destination side of this datagram's flow
*/
static struct udp_meta_t {
struct ipv6hdr ip6h;
struct iphdr ip4h;
struct tap_hdr taph;
union sockaddr_inany s_in;
flow_sidx_t tosidx;
}
#ifdef __AVX2__
__attribute__ ((aligned(32)))
#endif
udp_meta[UDP_MAX_FRAMES];
/**
* enum udp_iov_idx - Indices for the buffers making up a single UDP frame
* @UDP_IOV_TAP tap specific header
* @UDP_IOV_ETH Ethernet header
* @UDP_IOV_IP IP (v4/v6) header
* @UDP_IOV_PAYLOAD IP payload (UDP header + data)
* @UDP_NUM_IOVS the number of entries in the iovec array
*/
enum udp_iov_idx {
UDP_IOV_TAP,
UDP_IOV_ETH,
UDP_IOV_IP,
UDP_IOV_PAYLOAD,
UDP_NUM_IOVS,
};
/* IOVs and msghdr arrays for receiving datagrams from sockets */
static struct iovec udp_iov_recv [UDP_MAX_FRAMES];
static struct mmsghdr udp_mh_recv [UDP_MAX_FRAMES];
/* IOVs and msghdr arrays for sending "spliced" datagrams to sockets */
static union sockaddr_inany udp_splice_to;
static struct iovec udp_iov_splice [UDP_MAX_FRAMES];
static struct mmsghdr udp_mh_splice [UDP_MAX_FRAMES];
/* IOVs for L2 frames */
static struct iovec udp_l2_iov [UDP_MAX_FRAMES][UDP_NUM_IOVS];
/**
* udp_portmap_clear() - Clear UDP port map before configuration
*/
void udp_portmap_clear(void)
{
unsigned i;
for (i = 0; i < NUM_PORTS; i++) {
udp_splice_ns[V4][i] = udp_splice_ns[V6][i] = -1;
udp_splice_init[V4][i] = udp_splice_init[V6][i] = -1;
}
}
/**
* udp_update_l2_buf() - Update L2 buffers with Ethernet and IPv4 addresses
* @eth_d: Ethernet destination address, NULL if unchanged
* @eth_s: Ethernet source address, NULL if unchanged
*/
void udp_update_l2_buf(const unsigned char *eth_d, const unsigned char *eth_s)
{
eth_update_mac(&udp4_eth_hdr, eth_d, eth_s);
eth_update_mac(&udp6_eth_hdr, eth_d, eth_s);
}
/**
* udp_iov_init_one() - Initialise scatter-gather lists for one buffer
* @c: Execution context
* @i: Index of buffer to initialize
*/
static void udp_iov_init_one(const struct ctx *c, size_t i)
{
struct udp_payload_t *payload = &udp_payload[i];
struct msghdr *mh = &udp_mh_recv[i].msg_hdr;
struct udp_meta_t *meta = &udp_meta[i];
struct iovec *siov = &udp_iov_recv[i];
struct iovec *tiov = udp_l2_iov[i];
*meta = (struct udp_meta_t) {
.ip4h = L2_BUF_IP4_INIT(IPPROTO_UDP),
.ip6h = L2_BUF_IP6_INIT(IPPROTO_UDP),
};
*siov = IOV_OF_LVALUE(payload->data);
tiov[UDP_IOV_TAP] = tap_hdr_iov(c, &meta->taph);
tiov[UDP_IOV_PAYLOAD].iov_base = payload;
mh->msg_name = &meta->s_in;
mh->msg_namelen = sizeof(meta->s_in);
mh->msg_iov = siov;
mh->msg_iovlen = 1;
}
/**
* udp_iov_init() - Initialise scatter-gather L2 buffers
* @c: Execution context
*/
static void udp_iov_init(const struct ctx *c)
{
size_t i;
udp4_eth_hdr.h_proto = htons_constant(ETH_P_IP);
udp6_eth_hdr.h_proto = htons_constant(ETH_P_IPV6);
for (i = 0; i < UDP_MAX_FRAMES; i++)
udp_iov_init_one(c, i);
}
/**
* udp_splice_prepare() - Prepare one datagram for splicing
* @mmh: Receiving mmsghdr array
* @idx: Index of the datagram to prepare
*/
static void udp_splice_prepare(struct mmsghdr *mmh, unsigned idx)
{
udp_mh_splice[idx].msg_hdr.msg_iov->iov_len = mmh[idx].msg_len;
}
/**
* udp_splice_send() - Send a batch of datagrams from socket to socket
* @c: Execution context
* @start: Index of batch's first datagram in udp[46]_l2_buf
* @n: Number of datagrams in batch
* @src: Source port for datagram (target side)
* @dst: Destination port for datagrams (target side)
* @ref: epoll reference for origin socket
* @now: Timestamp
*/
static void udp_splice_send(const struct ctx *c, size_t start, size_t n,
flow_sidx_t tosidx)
{
const struct flowside *toside = flowside_at_sidx(tosidx);
const struct udp_flow *uflow = udp_at_sidx(tosidx);
uint8_t topif = pif_at_sidx(tosidx);
int s = uflow->s[tosidx.sidei];
socklen_t sl;
pif_sockaddr(c, &udp_splice_to, &sl, topif,
&toside->eaddr, toside->eport);
sendmmsg(s, udp_mh_splice + start, n, MSG_NOSIGNAL);
}
/**
* udp_update_hdr4() - Update headers for one IPv4 datagram
* @ip4h: Pre-filled IPv4 header (except for tot_len and saddr)
* @bp: Pointer to udp_payload_t to update
* @toside: Flowside for destination side
* @dlen: Length of UDP payload
* @no_udp_csum: Do not set UDP checksum
*
* Return: size of IPv4 payload (UDP header + data)
*/
static size_t udp_update_hdr4(struct iphdr *ip4h, struct udp_payload_t *bp,
const struct flowside *toside, size_t dlen,
bool no_udp_csum)
{
const struct in_addr *src = inany_v4(&toside->oaddr);
const struct in_addr *dst = inany_v4(&toside->eaddr);
size_t l4len = dlen + sizeof(bp->uh);
size_t l3len = l4len + sizeof(*ip4h);
ASSERT(src && dst);
ip4h->tot_len = htons(l3len);
ip4h->daddr = dst->s_addr;
ip4h->saddr = src->s_addr;
ip4h->check = csum_ip4_header(l3len, IPPROTO_UDP, *src, *dst);
bp->uh.source = htons(toside->oport);
bp->uh.dest = htons(toside->eport);
bp->uh.len = htons(l4len);
if (no_udp_csum) {
bp->uh.check = 0;
} else {
const struct iovec iov = {
.iov_base = bp->data,
.iov_len = dlen
};
csum_udp4(&bp->uh, *src, *dst, &iov, 1, 0);
}
return l4len;
}
/**
* udp_update_hdr6() - Update headers for one IPv6 datagram
* @ip6h: Pre-filled IPv6 header (except for payload_len and
* addresses)
* @bp: Pointer to udp_payload_t to update
* @toside: Flowside for destination side
* @dlen: Length of UDP payload
* @no_udp_csum: Do not set UDP checksum
*
* Return: size of IPv6 payload (UDP header + data)
*/
static size_t udp_update_hdr6(struct ipv6hdr *ip6h, struct udp_payload_t *bp,
const struct flowside *toside, size_t dlen,
bool no_udp_csum)
{
uint16_t l4len = dlen + sizeof(bp->uh);
ip6h->payload_len = htons(l4len);
ip6h->daddr = toside->eaddr.a6;
ip6h->saddr = toside->oaddr.a6;
ip6h->version = 6;
ip6h->nexthdr = IPPROTO_UDP;
ip6h->hop_limit = 255;
bp->uh.source = htons(toside->oport);
bp->uh.dest = htons(toside->eport);
bp->uh.len = ip6h->payload_len;
if (no_udp_csum) {
/* 0 is an invalid checksum for UDP IPv6 and dropped by
* the kernel stack, even if the checksum is disabled by virtio
* flags. We need to put any non-zero value here.
*/
bp->uh.check = 0xffff;
} else {
const struct iovec iov = {
.iov_base = bp->data,
.iov_len = dlen
};
csum_udp6(&bp->uh, &toside->oaddr.a6, &toside->eaddr.a6,
&iov, 1, 0);
}
return l4len;
}
/**
* udp_tap_prepare() - Convert one datagram into a tap frame
* @mmh: Receiving mmsghdr array
* @idx: Index of the datagram to prepare
* @toside: Flowside for destination side
* @no_udp_csum: Do not set UDP checksum
*/
static void udp_tap_prepare(const struct mmsghdr *mmh,
unsigned idx, const struct flowside *toside,
bool no_udp_csum)
{
struct iovec (*tap_iov)[UDP_NUM_IOVS] = &udp_l2_iov[idx];
struct udp_payload_t *bp = &udp_payload[idx];
struct udp_meta_t *bm = &udp_meta[idx];
size_t l4len;
if (!inany_v4(&toside->eaddr) || !inany_v4(&toside->oaddr)) {
l4len = udp_update_hdr6(&bm->ip6h, bp, toside,
mmh[idx].msg_len, no_udp_csum);
tap_hdr_update(&bm->taph, l4len + sizeof(bm->ip6h) +
sizeof(udp6_eth_hdr));
(*tap_iov)[UDP_IOV_ETH] = IOV_OF_LVALUE(udp6_eth_hdr);
(*tap_iov)[UDP_IOV_IP] = IOV_OF_LVALUE(bm->ip6h);
} else {
l4len = udp_update_hdr4(&bm->ip4h, bp, toside,
mmh[idx].msg_len, no_udp_csum);
tap_hdr_update(&bm->taph, l4len + sizeof(bm->ip4h) +
sizeof(udp4_eth_hdr));
(*tap_iov)[UDP_IOV_ETH] = IOV_OF_LVALUE(udp4_eth_hdr);
(*tap_iov)[UDP_IOV_IP] = IOV_OF_LVALUE(bm->ip4h);
}
(*tap_iov)[UDP_IOV_PAYLOAD].iov_len = l4len;
}
/**
* udp_sock_recverr() - Receive and clear an error from a socket
* @s: Socket to receive from
*
* Return: 1 if error received and processed, 0 if no more errors in queue, < 0
* if there was an error reading the queue
*
* #syscalls recvmsg
*/
static int udp_sock_recverr(int s)
{
const struct sock_extended_err *ee;
const struct cmsghdr *hdr;
char buf[CMSG_SPACE(sizeof(*ee))];
struct msghdr mh = {
.msg_name = NULL,
.msg_namelen = 0,
.msg_iov = NULL,
.msg_iovlen = 0,
.msg_control = buf,
.msg_controllen = sizeof(buf),
};
ssize_t rc;
rc = recvmsg(s, &mh, MSG_ERRQUEUE);
if (rc < 0) {
if (errno == EAGAIN || errno == EWOULDBLOCK)
return 0;
err_perror("UDP: Failed to read error queue");
return -1;
}
if (!(mh.msg_flags & MSG_ERRQUEUE)) {
err("Missing MSG_ERRQUEUE flag reading error queue");
return -1;
}
hdr = CMSG_FIRSTHDR(&mh);
if (!((hdr->cmsg_level == IPPROTO_IP &&
hdr->cmsg_type == IP_RECVERR) ||
(hdr->cmsg_level == IPPROTO_IPV6 &&
hdr->cmsg_type == IPV6_RECVERR))) {
err("Unexpected cmsg reading error queue");
return -1;
}
ee = (const struct sock_extended_err *)CMSG_DATA(hdr);
/* TODO: When possible propagate and otherwise handle errors */
debug("%s error on UDP socket %i: %s",
str_ee_origin(ee), s, strerror(ee->ee_errno));
return 1;
}
/**
* udp_sock_errs() - Process errors on a socket
* @c: Execution context
* @s: Socket to receive from
* @events: epoll events bitmap
*
* Return: Number of errors handled, or < 0 if we have an unrecoverable error
*/
static int udp_sock_errs(const struct ctx *c, int s, uint32_t events)
{
unsigned n_err = 0;
socklen_t errlen;
int rc, err;
ASSERT(!c->no_udp);
if (!(events & EPOLLERR))
return 0; /* Nothing to do */
/* Empty the error queue */
while ((rc = udp_sock_recverr(s)) > 0)
n_err += rc;
if (rc < 0)
return -1; /* error reading error, unrecoverable */
errlen = sizeof(err);
if (getsockopt(s, SOL_SOCKET, SO_ERROR, &err, &errlen) < 0 ||
errlen != sizeof(err)) {
err_perror("Error reading SO_ERROR");
return -1; /* error reading error, unrecoverable */
}
if (err) {
debug("Unqueued error on UDP socket %i: %s", s, strerror(err));
n_err++;
}
if (!n_err) {
/* EPOLLERR, but no errors to clear !? */
err("EPOLLERR event without reported errors on socket %i", s);
return -1; /* no way to clear, unrecoverable */
}
return n_err;
}
/**
* udp_sock_recv() - Receive datagrams from a socket
* @c: Execution context
* @s: Socket to receive from
* @events: epoll events bitmap
* @mmh mmsghdr array to receive into
*
* Return: Number of datagrams received
*
* #syscalls recvmmsg arm:recvmmsg_time64 i686:recvmmsg_time64
*/
static int udp_sock_recv(const struct ctx *c, int s, uint32_t events,
struct mmsghdr *mmh)
{
/* For not entirely clear reasons (data locality?) pasta gets better
* throughput if we receive tap datagrams one at a atime. For small
* splice datagrams throughput is slightly better if we do batch, but
* it's slightly worse for large splice datagrams. Since we don't know
* before we receive whether we'll use tap or splice, always go one at a
* time for pasta mode.
*/
int n = (c->mode == MODE_PASTA ? 1 : UDP_MAX_FRAMES);
ASSERT(!c->no_udp);
if (!(events & EPOLLIN))
return 0;
n = recvmmsg(s, mmh, n, 0, NULL);
if (n < 0) {
err_perror("Error receiving datagrams");
return 0;
}
return n;
}
/**
* udp_listen_sock_handler() - Handle new data from socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
* @now: Current timestamp
*
* #syscalls recvmmsg
*/
void udp_listen_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events, const struct timespec *now)
{
const socklen_t sasize = sizeof(udp_meta[0].s_in);
int n, i;
if (udp_sock_errs(c, ref.fd, events) < 0) {
err("UDP: Unrecoverable error on listening socket:"
" (%s port %hu)", pif_name(ref.udp.pif), ref.udp.port);
/* FIXME: what now? close/re-open socket? */
return;
}
if ((n = udp_sock_recv(c, ref.fd, events, udp_mh_recv)) <= 0)
return;
/* We divide datagrams into batches based on how we need to send them,
* determined by udp_meta[i].tosidx. To avoid either two passes through
* the array, or recalculating tosidx for a single entry, we have to
* populate it one entry *ahead* of the loop counter.
*/
udp_meta[0].tosidx = udp_flow_from_sock(c, ref, &udp_meta[0].s_in, now);
udp_mh_recv[0].msg_hdr.msg_namelen = sasize;
for (i = 0; i < n; ) {
flow_sidx_t batchsidx = udp_meta[i].tosidx;
uint8_t batchpif = pif_at_sidx(batchsidx);
int batchstart = i;
do {
if (pif_is_socket(batchpif)) {
udp_splice_prepare(udp_mh_recv, i);
} else if (batchpif == PIF_TAP) {
udp_tap_prepare(udp_mh_recv, i,
flowside_at_sidx(batchsidx),
false);
}
if (++i >= n)
break;
udp_meta[i].tosidx = udp_flow_from_sock(c, ref,
&udp_meta[i].s_in,
now);
udp_mh_recv[i].msg_hdr.msg_namelen = sasize;
} while (flow_sidx_eq(udp_meta[i].tosidx, batchsidx));
if (pif_is_socket(batchpif)) {
udp_splice_send(c, batchstart, i - batchstart,
batchsidx);
} else if (batchpif == PIF_TAP) {
tap_send_frames(c, &udp_l2_iov[batchstart][0],
UDP_NUM_IOVS, i - batchstart);
} else if (flow_sidx_valid(batchsidx)) {
flow_sidx_t fromsidx = flow_sidx_opposite(batchsidx);
struct udp_flow *uflow = udp_at_sidx(batchsidx);
flow_err(uflow,
"No support for forwarding UDP from %s to %s",
pif_name(pif_at_sidx(fromsidx)),
pif_name(batchpif));
} else {
debug("Discarding %d datagrams without flow",
i - batchstart);
}
}
}
/**
* udp_reply_sock_handler() - Handle new data from flow specific socket
* @c: Execution context
* @ref: epoll reference
* @events: epoll events bitmap
* @now: Current timestamp
*
* #syscalls recvmmsg
*/
void udp_reply_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events, const struct timespec *now)
{
flow_sidx_t tosidx = flow_sidx_opposite(ref.flowside);
const struct flowside *toside = flowside_at_sidx(tosidx);
struct udp_flow *uflow = udp_at_sidx(ref.flowside);
int from_s = uflow->s[ref.flowside.sidei];
uint8_t topif = pif_at_sidx(tosidx);
int n, i;
ASSERT(!c->no_udp && uflow);
if (udp_sock_errs(c, from_s, events) < 0) {
flow_err(uflow, "Unrecoverable error on reply socket");
flow_err_details(uflow);
udp_flow_close(c, uflow);
return;
}
if ((n = udp_sock_recv(c, from_s, events, udp_mh_recv)) <= 0)
return;
flow_trace(uflow, "Received %d datagrams on reply socket", n);
uflow->ts = now->tv_sec;
for (i = 0; i < n; i++) {
if (pif_is_socket(topif))
udp_splice_prepare(udp_mh_recv, i);
else if (topif == PIF_TAP)
udp_tap_prepare(udp_mh_recv, i, toside, false);
/* Restore sockaddr length clobbered by recvmsg() */
udp_mh_recv[i].msg_hdr.msg_namelen = sizeof(udp_meta[i].s_in);
}
if (pif_is_socket(topif)) {
udp_splice_send(c, 0, n, tosidx);
} else if (topif == PIF_TAP) {
tap_send_frames(c, &udp_l2_iov[0][0], UDP_NUM_IOVS, n);
} else {
uint8_t frompif = pif_at_sidx(ref.flowside);
flow_err(uflow, "No support for forwarding UDP from %s to %s",
pif_name(frompif), pif_name(topif));
}
}
/**
* udp_tap_handler() - Handle packets from tap
* @c: Execution context
* @pif: pif on which the packet is arriving
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of UDP packets, with UDP headers
* @idx: Index of first packet to process
* @now: Current timestamp
*
* Return: count of consumed packets
*
* #syscalls sendmmsg
*/
int udp_tap_handler(const struct ctx *c, uint8_t pif,
sa_family_t af, const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
{
const struct flowside *toside;
struct mmsghdr mm[UIO_MAXIOV];
union sockaddr_inany to_sa;
struct iovec m[UIO_MAXIOV];
const struct udphdr *uh;
struct udp_flow *uflow;
int i, s, count = 0;
flow_sidx_t tosidx;
in_port_t src, dst;
uint8_t topif;
socklen_t sl;
ASSERT(!c->no_udp);
uh = packet_get(p, idx, 0, sizeof(*uh), NULL);
if (!uh)
return 1;
/* The caller already checks that all the messages have the same source
* and destination, so we can just take those from the first message.
*/
src = ntohs(uh->source);
dst = ntohs(uh->dest);
tosidx = udp_flow_from_tap(c, pif, af, saddr, daddr, src, dst, now);
if (!(uflow = udp_at_sidx(tosidx))) {
char sstr[INET6_ADDRSTRLEN], dstr[INET6_ADDRSTRLEN];
debug("Dropping datagram with no flow %s %s:%hu -> %s:%hu",
pif_name(pif),
inet_ntop(af, saddr, sstr, sizeof(sstr)), src,
inet_ntop(af, daddr, dstr, sizeof(dstr)), dst);
return 1;
}
topif = pif_at_sidx(tosidx);
if (topif != PIF_HOST) {
flow_sidx_t fromsidx = flow_sidx_opposite(tosidx);
uint8_t frompif = pif_at_sidx(fromsidx);
flow_err(uflow, "No support for forwarding UDP from %s to %s",
pif_name(frompif), pif_name(topif));
return 1;
}
toside = flowside_at_sidx(tosidx);
s = udp_at_sidx(tosidx)->s[tosidx.sidei];
ASSERT(s >= 0);
pif_sockaddr(c, &to_sa, &sl, topif, &toside->eaddr, toside->eport);
for (i = 0; i < (int)p->count - idx; i++) {
struct udphdr *uh_send;
size_t len;
uh_send = packet_get(p, idx + i, 0, sizeof(*uh), &len);
if (!uh_send)
return p->count - idx;
mm[i].msg_hdr.msg_name = &to_sa;
mm[i].msg_hdr.msg_namelen = sl;
if (len) {
m[i].iov_base = (char *)(uh_send + 1);
m[i].iov_len = len;
mm[i].msg_hdr.msg_iov = m + i;
mm[i].msg_hdr.msg_iovlen = 1;
} else {
mm[i].msg_hdr.msg_iov = NULL;
mm[i].msg_hdr.msg_iovlen = 0;
}
mm[i].msg_hdr.msg_control = NULL;
mm[i].msg_hdr.msg_controllen = 0;
mm[i].msg_hdr.msg_flags = 0;
count++;
}
count = sendmmsg(s, mm, count, MSG_NOSIGNAL);
if (count < 0)
return 1;
return count;
}
/**
* udp_sock_init() - Initialise listening sockets for a given port
* @c: Execution context
* @ns: In pasta mode, if set, bind with loopback address in namespace
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int udp_sock_init(const struct ctx *c, int ns, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
union udp_listen_epoll_ref uref = {
.pif = ns ? PIF_SPLICE : PIF_HOST,
.port = port,
};
int r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
ASSERT(!c->no_udp);
if (!addr && c->ifi4 && c->ifi6 && !ns) {
int s;
/* Attempt to get a dual stack socket */
s = pif_sock_l4(c, EPOLL_TYPE_UDP_LISTEN, PIF_HOST,
NULL, ifname, port, uref.u32);
udp_splice_init[V4][port] = s < 0 ? -1 : s;
udp_splice_init[V6][port] = s < 0 ? -1 : s;
if (IN_INTERVAL(0, FD_REF_MAX, s))
return 0;
}
if ((!addr || inany_v4(addr)) && c->ifi4) {
if (!ns) {
r4 = pif_sock_l4(c, EPOLL_TYPE_UDP_LISTEN, PIF_HOST,
addr ? addr : &inany_any4, ifname,
port, uref.u32);
udp_splice_init[V4][port] = r4 < 0 ? -1 : r4;
} else {
r4 = pif_sock_l4(c, EPOLL_TYPE_UDP_LISTEN, PIF_SPLICE,
&inany_loopback4, ifname,
port, uref.u32);
udp_splice_ns[V4][port] = r4 < 0 ? -1 : r4;
}
}
if ((!addr || !inany_v4(addr)) && c->ifi6) {
if (!ns) {
r6 = pif_sock_l4(c, EPOLL_TYPE_UDP_LISTEN, PIF_HOST,
addr ? addr : &inany_any6, ifname,
port, uref.u32);
udp_splice_init[V6][port] = r6 < 0 ? -1 : r6;
} else {
r6 = pif_sock_l4(c, EPOLL_TYPE_UDP_LISTEN, PIF_SPLICE,
&inany_loopback6, ifname,
port, uref.u32);
udp_splice_ns[V6][port] = r6 < 0 ? -1 : r6;
}
}
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* udp_splice_iov_init() - Set up buffers and descriptors for recvmmsg/sendmmsg
*/
static void udp_splice_iov_init(void)
{
int i;
for (i = 0; i < UDP_MAX_FRAMES; i++) {
struct msghdr *mh = &udp_mh_splice[i].msg_hdr;
mh->msg_name = &udp_splice_to;
mh->msg_namelen = sizeof(udp_splice_to);
udp_iov_splice[i].iov_base = udp_payload[i].data;
mh->msg_iov = &udp_iov_splice[i];
mh->msg_iovlen = 1;
}
}
/**
* udp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void udp_port_rebind(struct ctx *c, bool outbound)
{
int (*socks)[NUM_PORTS] = outbound ? udp_splice_ns : udp_splice_init;
const uint8_t *fmap
= outbound ? c->udp.fwd_out.map : c->udp.fwd_in.map;
const uint8_t *rmap
= outbound ? c->udp.fwd_in.map : c->udp.fwd_out.map;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[V4][port] >= 0) {
close(socks[V4][port]);
socks[V4][port] = -1;
}
if (socks[V6][port] >= 0) {
close(socks[V6][port]);
socks[V6][port] = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[V4][port] == -1) ||
(c->ifi6 && socks[V6][port] == -1))
udp_sock_init(c, outbound, NULL, NULL, port);
}
}
/**
* udp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int udp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
udp_port_rebind(c, true);
return 0;
}
/**
* udp_timer() - Scan activity bitmaps for ports with associated timed events
* @c: Execution context
* @now: Current timestamp
*/
void udp_timer(struct ctx *c, const struct timespec *now)
{
(void)now;
ASSERT(!c->no_udp);
if (c->mode == MODE_PASTA) {
if (c->udp.fwd_out.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_out, &c->udp.fwd_in,
&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(udp_port_rebind_outbound, c);
}
if (c->udp.fwd_in.mode == FWD_AUTO) {
fwd_scan_ports_udp(&c->udp.fwd_in, &c->udp.fwd_out,
&c->tcp.fwd_in, &c->tcp.fwd_out);
udp_port_rebind(c, false);
}
}
}
/**
* udp_init() - Initialise per-socket data, and sockets in namespace
* @c: Execution context
*
* Return: 0
*/
int udp_init(struct ctx *c)
{
ASSERT(!c->no_udp);
udp_iov_init(c);
if (c->mode == MODE_PASTA) {
udp_splice_iov_init();
NS_CALL(udp_port_rebind_outbound, c);
}
return 0;
}