1
0
mirror of https://passt.top/passt synced 2025-01-24 21:25:17 +00:00
passt/checksum.c
David Gibson 7c7b68dbe0 Use typing to reduce chances of IPv4 endianness errors
We recently corrected some errors handling the endianness of IPv4
addresses.  These are very easy errors to make since although we mostly
store them in network endianness, we sometimes need to manipulate them in
host endianness.

To reduce the chances of making such mistakes again, change to always using
a (struct in_addr) instead of a bare in_addr_t or uint32_t to store network
endian addresses.  This makes it harder to accidentally do arithmetic or
comparisons on such addresses as if they were host endian.

We introduce a number of IN4_IS_ADDR_*() helpers to make it easier to
directly work with struct in_addr values.  This has the additional benefit
of making the IPv4 and IPv6 paths more visually similar.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-11-04 12:04:24 +01:00

415 lines
13 KiB
C

// SPDX-License-Identifier: AGPL-3.0-or-later AND BSD-3-Clause
/* PASST - Plug A Simple Socket Transport
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
*
* checksum.c - TCP/IP checksum routines
*
* Copyright (c) 2021 Red Hat GmbH
* Author: Stefano Brivio <sbrivio@redhat.com>
*
* This file also contains code originally licensed under the following terms:
*
* Copyright (c) 2014-2016, The Regents of the University of California.
* Copyright (c) 2016-2017, Nefeli Networks, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the names of the copyright holders nor the names of their
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* See the comment to csum_avx2() for further details.
*/
#include <arpa/inet.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <stddef.h>
#include <stdint.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
/* Checksums are optional for UDP over IPv4, so we usually just set
* them to 0. Change this to 1 to calculate real UDP over IPv4
* checksums
*/
#define UDP4_REAL_CHECKSUMS 0
/**
* sum_16b() - Calculate sum of 16-bit words
* @buf: Input buffer
* @len: Buffer length
*
* Return: 32-bit sum of 16-bit words
*/
uint32_t sum_16b(const void *buf, size_t len)
{
const uint16_t *p = buf;
uint32_t sum = 0;
while (len > 1) {
sum += *p++;
len -= 2;
}
if (len > 0)
sum += *p & htons(0xff00);
return sum;
}
/**
* csum_fold() - Fold long sum for IP and TCP checksum
* @sum: Original long sum
*
* Return: 16-bit folded sum
*/
uint16_t csum_fold(uint32_t sum)
{
while (sum >> 16)
sum = (sum & 0xffff) + (sum >> 16);
return sum;
}
/**
* csum_unaligned() - Compute TCP/IP-style checksum for not 32-byte aligned data
* @buf: Input data
* @len: Input length
* @init: Initial 32-bit checksum, 0 for no pre-computed checksum
*
* Return: 16-bit IPv4-style checksum
*/
#if CSUM_UNALIGNED_NO_IPA
__attribute__((__noipa__)) /* See comment in Makefile */
#endif
uint16_t csum_unaligned(const void *buf, size_t len, uint32_t init)
{
return (uint16_t)~csum_fold(sum_16b(buf, len) + init);
}
/**
* csum_ip4_header() - Calculate and set IPv4 header checksum
* @ip4h: IPv4 header
*/
void csum_ip4_header(struct iphdr *ip4h)
{
ip4h->check = 0;
ip4h->check = csum_unaligned(ip4h, (size_t)ip4h->ihl * 4, 0);
}
/**
* csum_udp4() - Calculate and set checksum for a UDP over IPv4 packet
* @udp4hr: UDP header, initialised apart from checksum
* @saddr: IPv4 source address
* @daddr: IPv4 destination address
* @payload: ICMPv4 packet payload
* @len: Length of @payload (not including UDP)
*/
void csum_udp4(struct udphdr *udp4hr,
struct in_addr saddr, struct in_addr daddr,
const void *payload, size_t len)
{
/* UDP checksums are optional, so don't bother */
udp4hr->check = 0;
if (UDP4_REAL_CHECKSUMS) {
/* UNTESTED: if we did want real UDPv4 checksums, this
* is roughly what we'd need */
uint32_t psum = csum_fold(saddr.s_addr)
+ csum_fold(daddr.s_addr)
+ htons(len + sizeof(*udp4hr))
+ htons(IPPROTO_UDP);
/* Add in partial checksum for the UDP header alone */
psum += sum_16b(udp4hr, sizeof(*udp4hr));
udp4hr->check = csum_unaligned(payload, len, psum);
}
}
/**
* csum_icmp4() - Calculate and set checksum for an ICMP packet
* @icmp4hr: ICMP header, initialised apart from checksum
* @payload: ICMP packet payload
* @len: Length of @payload (not including ICMP header)
*/
void csum_icmp4(struct icmphdr *icmp4hr, const void *payload, size_t len)
{
uint32_t psum;
icmp4hr->checksum = 0;
/* Partial checksum for ICMP header alone */
psum = sum_16b(icmp4hr, sizeof(*icmp4hr));
icmp4hr->checksum = csum_unaligned(payload, len, psum);
}
/**
* csum_udp6() - Calculate and set checksum for a UDP over IPv6 packet
* @udp6hr: UDP header, initialised apart from checksum
* @payload: UDP packet payload
* @len: Length of @payload (not including UDP header)
*/
void csum_udp6(struct udphdr *udp6hr,
const struct in6_addr *saddr, const struct in6_addr *daddr,
const void *payload, size_t len)
{
/* Partial checksum for the pseudo-IPv6 header */
uint32_t psum = sum_16b(saddr, sizeof(*saddr)) +
sum_16b(daddr, sizeof(*daddr)) +
htons(len + sizeof(*udp6hr)) + htons(IPPROTO_UDP);
udp6hr->check = 0;
/* Add in partial checksum for the UDP header alone */
psum += sum_16b(udp6hr, sizeof(*udp6hr));
udp6hr->check = csum_unaligned(payload, len, psum);
}
/**
* csum_icmp6() - Calculate and set checksum for an ICMPv6 packet
* @icmp6hr: ICMPv6 header, initialised apart from checksum
* @saddr: IPv6 source address
* @daddr: IPv6 destination address
* @payload: ICMP packet payload
* @len: Length of @payload (not including ICMPv6 header)
*/
void csum_icmp6(struct icmp6hdr *icmp6hr,
const struct in6_addr *saddr, const struct in6_addr *daddr,
const void *payload, size_t len)
{
/* Partial checksum for the pseudo-IPv6 header */
uint32_t psum = sum_16b(saddr, sizeof(*saddr)) +
sum_16b(daddr, sizeof(*daddr)) +
htons(len + sizeof(*icmp6hr)) + htons(IPPROTO_ICMPV6);
icmp6hr->icmp6_cksum = 0;
/* Add in partial checksum for the ICMPv6 header alone */
psum += sum_16b(icmp6hr, sizeof(*icmp6hr));
icmp6hr->icmp6_cksum = csum_unaligned(payload, len, psum);
}
#ifdef __AVX2__
#include <immintrin.h>
/**
* csum_avx2() - Compute 32-bit checksum using AVX2 SIMD instructions
* @buf: Input buffer, must be aligned to 32-byte boundary
* @len: Input length
* @init: Initial 32-bit checksum, 0 for no pre-computed checksum
*
* Return: 32-bit checksum, not complemented, not folded
*
* This implementation is mostly sourced from BESS ("Berkeley Extensible
* Software Switch"), core/utils/checksum.h, distributed under the terms of the
* 3-Clause BSD license. Notable changes:
* - input buffer data is loaded (streamed) with a non-temporal aligned hint
* (VMOVNTDQA, _mm256_stream_load_si256() intrinsic) instead of the original
* unaligned load with temporal hint (VMOVDQU, _mm256_loadu_si256() intrinsic)
* given that the input buffer layout guarantees 32-byte alignment of TCP and
* UDP headers, and that the data is not used immediately afterwards, reducing
* cache pollution significantly and latency (e.g. on Intel Skylake: 0 instead
* of 7)
* - read from four streams in parallel as long as we have more than 128 bytes,
* not just two
* - replace the ADCQ implementation for the portion remaining after the
* checksum computation for 128-byte blocks by a load/unpack/add loop on a
* single stream, and do the rest with a for loop, auto-vectorisation seems to
* outperforms the original hand-coded loop there
* - sum_a/sum_b unpacking is interleaved and not sequential to reduce stalls
* - coding style adaptation
*/
static uint32_t csum_avx2(const void *buf, size_t len, uint32_t init)
{
__m256i a, b, sum256, sum_a_hi, sum_a_lo, sum_b_hi, sum_b_lo, c, d;
__m256i __sum_a_hi, __sum_a_lo, __sum_b_hi, __sum_b_lo;
const __m256i *buf256 = (const __m256i *)buf;
const uint64_t *buf64;
const uint16_t *buf16;
uint64_t sum64 = init;
int odd = len & 1;
__m128i sum128;
__m256i zero;
zero = _mm256_setzero_si256();
if (len < sizeof(__m256i) * 4)
goto less_than_128_bytes;
/* We parallelize two ymm streams to minimize register dependency:
*
* a: buf256, buf256 + 2, ...
* b: buf256 + 1, buf256 + 3, ...
*/
a = _mm256_stream_load_si256(buf256);
b = _mm256_stream_load_si256(buf256 + 1);
/* For each stream, accumulate unpackhi and unpacklo in parallel (as
* 4x64bit vectors, so that each upper 0000 can hold carries):
*
* 32B data: aaaaAAAA bbbbBBBB ccccCCCC ddddDDDD (1 letter: 1 byte)
* unpackhi: bbbb0000 BBBB0000 dddd0000 DDDD0000
* unpacklo: aaaa0000 AAAA0000 cccc0000 CCCC0000
*/
sum_a_hi = _mm256_unpackhi_epi32(a, zero);
sum_b_hi = _mm256_unpackhi_epi32(b, zero);
sum_a_lo = _mm256_unpacklo_epi32(a, zero);
sum_b_lo = _mm256_unpacklo_epi32(b, zero);
len -= sizeof(__m256i) * 2;
buf256 += 2;
/* As long as we have more than 128 bytes, (stream) load from four
* streams instead of two, interleaving loads and register usage, to
* further decrease stalls, but don't double the number of accumulators
* and don't make this a general case to keep branching reasonable.
*/
if (len >= sizeof(a) * 4) {
a = _mm256_stream_load_si256(buf256);
b = _mm256_stream_load_si256(buf256 + 1);
c = _mm256_stream_load_si256(buf256 + 2);
d = _mm256_stream_load_si256(buf256 + 3);
}
for (; len >= sizeof(a) * 4; len -= sizeof(a) * 4, buf256 += 4) {
__sum_a_hi = _mm256_add_epi64(sum_a_hi,
_mm256_unpackhi_epi32(a, zero));
__sum_b_hi = _mm256_add_epi64(sum_b_hi,
_mm256_unpackhi_epi32(b, zero));
__sum_a_lo = _mm256_add_epi64(sum_a_lo,
_mm256_unpacklo_epi32(a, zero));
__sum_b_lo = _mm256_add_epi64(sum_b_lo,
_mm256_unpacklo_epi32(b, zero));
if (len >= sizeof(a) * 8) {
a = _mm256_stream_load_si256(buf256 + 4);
b = _mm256_stream_load_si256(buf256 + 5);
}
sum_a_hi = _mm256_add_epi64(__sum_a_hi,
_mm256_unpackhi_epi32(c, zero));
sum_b_hi = _mm256_add_epi64(__sum_b_hi,
_mm256_unpackhi_epi32(d, zero));
sum_a_lo = _mm256_add_epi64(__sum_a_lo,
_mm256_unpacklo_epi32(c, zero));
sum_b_lo = _mm256_add_epi64(__sum_b_lo,
_mm256_unpacklo_epi32(d, zero));
if (len >= sizeof(a) * 8) {
c = _mm256_stream_load_si256(buf256 + 6);
d = _mm256_stream_load_si256(buf256 + 7);
}
}
for (; len >= sizeof(a) * 2; len -= sizeof(a) * 2, buf256 += 2) {
a = _mm256_stream_load_si256(buf256);
b = _mm256_stream_load_si256(buf256 + 1);
sum_a_hi = _mm256_add_epi64(sum_a_hi,
_mm256_unpackhi_epi32(a, zero));
sum_b_hi = _mm256_add_epi64(sum_b_hi,
_mm256_unpackhi_epi32(b, zero));
sum_a_lo = _mm256_add_epi64(sum_a_lo,
_mm256_unpacklo_epi32(a, zero));
sum_b_lo = _mm256_add_epi64(sum_b_lo,
_mm256_unpacklo_epi32(b, zero));
}
/* Fold four 256bit sums into one 128-bit sum. */
sum256 = _mm256_add_epi64(_mm256_add_epi64(sum_a_hi, sum_b_lo),
_mm256_add_epi64(sum_b_hi, sum_a_lo));
sum128 = _mm_add_epi64(_mm256_extracti128_si256(sum256, 0),
_mm256_extracti128_si256(sum256, 1));
/* Fold 128-bit sum into 64 bits. */
sum64 += _mm_extract_epi64(sum128, 0) + _mm_extract_epi64(sum128, 1);
less_than_128_bytes:
for (; len >= sizeof(a); len -= sizeof(a), buf256++) {
a = _mm256_stream_load_si256(buf256);
sum_a_hi = _mm256_unpackhi_epi32(a, zero);
sum_a_lo = _mm256_unpacklo_epi32(a, zero);
sum256 = _mm256_add_epi64(sum_a_hi, sum_a_lo);
sum128 = _mm_add_epi64(_mm256_extracti128_si256(sum256, 0),
_mm256_extracti128_si256(sum256, 1));
sum64 += _mm_extract_epi64(sum128, 0);
sum64 += _mm_extract_epi64(sum128, 1);
}
buf64 = (const uint64_t *)buf256;
/* Repeat 16-bit one's complement sum (at sum64). */
buf16 = (const uint16_t *)buf64;
while (len >= sizeof(uint16_t)) {
sum64 += *buf16++;
len -= sizeof(uint16_t);
}
/* Add remaining 8 bits to the one's complement sum. */
if (odd)
sum64 += *(const uint8_t *)buf16;
/* Reduce 64-bit unsigned int to 32-bit unsigned int. */
sum64 = (sum64 >> 32) + (sum64 & 0xffffffff);
sum64 += sum64 >> 32;
return (uint32_t)sum64;
}
/**
* csum() - Compute TCP/IP-style checksum
* @buf: Input buffer, must be aligned to 32-byte boundary
* @len: Input length
* @init: Initial 32-bit checksum, 0 for no pre-computed checksum
*
* Return: 16-bit folded, complemented checksum sum
*/
uint16_t csum(const void *buf, size_t len, uint32_t init)
{
return (uint16_t)~csum_fold(csum_avx2(buf, len, init));
}
#else /* __AVX2__ */
/**
* csum() - Compute TCP/IP-style checksum
* @buf: Input buffer
* @len: Input length
* @sum: Initial 32-bit checksum, 0 for no pre-computed checksum
*
* Return: 16-bit folded, complemented checksum
*/
uint16_t csum(const void *buf, size_t len, uint32_t init)
{
return csum_unaligned(buf, len, init);
}
#endif /* !__AVX2__ */