cloud-hypervisor/vmm/src/vm.rs

958 lines
30 KiB
Rust
Raw Normal View History

// Copyright © 2020, Oracle and/or its affiliates.
//
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
extern crate anyhow;
extern crate arch;
extern crate devices;
extern crate epoll;
extern crate kvm_ioctls;
extern crate libc;
extern crate linux_loader;
extern crate net_util;
extern crate signal_hook;
#[cfg(feature = "pci_support")]
extern crate vfio;
extern crate vm_allocator;
extern crate vm_memory;
extern crate vm_virtio;
use crate::config::{DeviceConfig, VmConfig};
use crate::cpu;
use crate::device_manager::{get_win_size, Console, DeviceManager, DeviceManagerError};
use crate::memory_manager::{get_host_cpu_phys_bits, Error as MemoryManagerError, MemoryManager};
use anyhow::anyhow;
use arch::{layout, BootProtocol, EntryPoint};
use devices::{ioapic, HotPlugNotificationFlags};
use kvm_bindings::{kvm_enable_cap, kvm_userspace_memory_region, KVM_CAP_SPLIT_IRQCHIP};
use kvm_ioctls::*;
use linux_loader::cmdline::Cmdline;
use linux_loader::loader::KernelLoader;
use signal_hook::{iterator::Signals, SIGINT, SIGTERM, SIGWINCH};
use std::ffi::CString;
use std::fs::File;
use std::io;
use std::ops::Deref;
use std::path::PathBuf;
use std::sync::{Arc, Mutex, RwLock};
use std::{result, str, thread};
use vm_allocator::{GsiApic, SystemAllocator};
use vm_device::{Migratable, MigratableError, Pausable, Snapshotable};
use vm_memory::{
Address, Bytes, GuestAddress, GuestAddressSpace, GuestMemory, GuestMemoryMmap,
GuestMemoryRegion, GuestUsize,
};
use vmm_sys_util::eventfd::EventFd;
use vmm_sys_util::terminal::Terminal;
const X86_64_IRQ_BASE: u32 = 5;
// CPUID feature bits
const TSC_DEADLINE_TIMER_ECX_BIT: u8 = 24; // tsc deadline timer ecx bit.
const HYPERVISOR_ECX_BIT: u8 = 31; // Hypervisor ecx bit.
// 64 bit direct boot entry offset for bzImage
const KERNEL_64BIT_ENTRY_OFFSET: u64 = 0x200;
/// Errors associated with VM management
#[derive(Debug)]
pub enum Error {
/// Cannot open the VM file descriptor.
VmFd(io::Error),
/// Cannot create the KVM instance
VmCreate(kvm_ioctls::Error),
/// Cannot set the VM up
VmSetup(kvm_ioctls::Error),
/// Cannot open the kernel image
KernelFile(io::Error),
/// Cannot load the kernel in memory
KernelLoad(linux_loader::loader::Error),
/// Cannot load the command line in memory
LoadCmdLine(linux_loader::loader::Error),
/// Cannot modify the command line
CmdLineInsertStr(linux_loader::cmdline::Error),
/// Cannot convert command line into CString
CmdLineCString(std::ffi::NulError),
/// Cannot configure system
ConfigureSystem(arch::Error),
PoisonedState,
/// Cannot create a device manager.
DeviceManager(DeviceManagerError),
/// Write to the console failed.
Console(vmm_sys_util::errno::Error),
/// Cannot setup terminal in raw mode.
SetTerminalRaw(vmm_sys_util::errno::Error),
/// Cannot setup terminal in canonical mode.
SetTerminalCanon(vmm_sys_util::errno::Error),
/// Cannot create the system allocator
CreateSystemAllocator,
/// Failed parsing network parameters
ParseNetworkParameters,
/// Memory is overflow
MemOverflow,
/// Failed to allocate the IOAPIC memory range.
IoapicRangeAllocation,
/// Cannot spawn a signal handler thread
SignalHandlerSpawn(io::Error),
/// Failed to join on vCPU threads
ThreadCleanup(std::boxed::Box<dyn std::any::Any + std::marker::Send>),
/// Failed to create a new KVM instance
KvmNew(kvm_ioctls::Error),
/// VM is not created
VmNotCreated,
/// VM is not running
VmNotRunning,
/// Cannot clone EventFd.
EventFdClone(io::Error),
/// Invalid VM state transition
InvalidStateTransition(VmState, VmState),
/// Error from CPU handling
CpuManager(cpu::Error),
/// Capability missing
CapabilityMissing(Cap),
/// Cannot pause devices
PauseDevices(MigratableError),
/// Cannot resume devices
ResumeDevices(MigratableError),
/// Cannot pause CPUs
PauseCpus(MigratableError),
/// Cannot resume cpus
ResumeCpus(MigratableError),
/// Cannot pause VM
Pause(MigratableError),
/// Cannot resume VM
Resume(MigratableError),
/// Memory manager error
MemoryManager(MemoryManagerError),
/// No PCI support
NoPciSupport,
}
pub type Result<T> = result::Result<T, Error>;
#[derive(Clone, Copy, Debug, Deserialize, Serialize, PartialEq)]
pub enum VmState {
Created,
Running,
Shutdown,
Paused,
}
impl VmState {
fn valid_transition(self, new_state: VmState) -> Result<()> {
match self {
VmState::Created => match new_state {
VmState::Created | VmState::Shutdown | VmState::Paused => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running => Ok(()),
},
VmState::Running => match new_state {
VmState::Created | VmState::Running => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Paused | VmState::Shutdown => Ok(()),
},
VmState::Shutdown => match new_state {
VmState::Paused | VmState::Created | VmState::Shutdown => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running => Ok(()),
},
VmState::Paused => match new_state {
VmState::Created | VmState::Paused => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running | VmState::Shutdown => Ok(()),
},
}
}
}
pub struct Vm {
kernel: File,
threads: Vec<thread::JoinHandle<()>>,
device_manager: Arc<Mutex<DeviceManager>>,
config: Arc<Mutex<VmConfig>>,
on_tty: bool,
signals: Option<Signals>,
state: RwLock<VmState>,
cpu_manager: Arc<Mutex<cpu::CpuManager>>,
memory_manager: Arc<Mutex<MemoryManager>>,
}
impl Vm {
pub fn new(
config: Arc<Mutex<VmConfig>>,
exit_evt: EventFd,
reset_evt: EventFd,
vmm_path: PathBuf,
) -> Result<Self> {
let kvm = Kvm::new().map_err(Error::KvmNew)?;
// Check required capabilities:
if !kvm.check_extension(Cap::SignalMsi) {
return Err(Error::CapabilityMissing(Cap::SignalMsi));
}
if !kvm.check_extension(Cap::TscDeadlineTimer) {
return Err(Error::CapabilityMissing(Cap::TscDeadlineTimer));
}
if !kvm.check_extension(Cap::SplitIrqchip) {
return Err(Error::CapabilityMissing(Cap::SplitIrqchip));
}
let kernel = File::open(&config.lock().unwrap().kernel.as_ref().unwrap().path)
.map_err(Error::KernelFile)?;
let fd: VmFd;
loop {
match kvm.create_vm() {
Ok(res) => fd = res,
Err(e) => {
if e.errno() == libc::EINTR {
// If the error returned is EINTR, which means the
// ioctl has been interrupted, we have to retry as
// this can't be considered as a regular error.
continue;
} else {
return Err(Error::VmCreate(e));
}
}
}
break;
}
let fd = Arc::new(fd);
// Set TSS
fd.set_tss_address(arch::x86_64::layout::KVM_TSS_ADDRESS.raw_value() as usize)
.map_err(Error::VmSetup)?;
let mut cpuid_patches = Vec::new();
// Create split irqchip
// Only the local APIC is emulated in kernel, both PICs and IOAPIC
// are not.
let mut cap: kvm_enable_cap = Default::default();
cap.cap = KVM_CAP_SPLIT_IRQCHIP;
cap.args[0] = ioapic::NUM_IOAPIC_PINS as u64;
fd.enable_cap(&cap).map_err(Error::VmSetup)?;
// Patch tsc deadline timer bit
cpuid_patches.push(cpu::CpuidPatch {
function: 1,
index: 0,
flags_bit: None,
eax_bit: None,
ebx_bit: None,
ecx_bit: Some(TSC_DEADLINE_TIMER_ECX_BIT),
edx_bit: None,
});
// Patch hypervisor bit
cpuid_patches.push(cpu::CpuidPatch {
function: 1,
index: 0,
flags_bit: None,
eax_bit: None,
ebx_bit: None,
ecx_bit: Some(HYPERVISOR_ECX_BIT),
edx_bit: None,
});
// Supported CPUID
let mut cpuid = kvm
.get_supported_cpuid(kvm_bindings::KVM_MAX_CPUID_ENTRIES)
.map_err(Error::VmSetup)?;
cpu::CpuidPatch::patch_cpuid(&mut cpuid, cpuid_patches);
let ioapic = GsiApic::new(
X86_64_IRQ_BASE,
ioapic::NUM_IOAPIC_PINS as u32 - X86_64_IRQ_BASE,
);
// Let's allocate 64 GiB of addressable MMIO space, starting at 0.
let allocator = Arc::new(Mutex::new(
SystemAllocator::new(
GuestAddress(0),
1 << 16 as GuestUsize,
GuestAddress(0),
1 << get_host_cpu_phys_bits(),
layout::MEM_32BIT_RESERVED_START,
layout::MEM_32BIT_DEVICES_SIZE,
vec![ioapic],
)
.ok_or(Error::CreateSystemAllocator)?,
));
let memory_config = config.lock().unwrap().memory.clone();
let memory_manager = MemoryManager::new(
allocator.clone(),
fd.clone(),
memory_config.size,
memory_config.hotplug_size,
&memory_config.file,
memory_config.mergeable,
)
.map_err(Error::MemoryManager)?;
let guest_memory = memory_manager.lock().unwrap().guest_memory();
let device_manager = DeviceManager::new(
fd.clone(),
config.clone(),
allocator,
memory_manager.clone(),
&exit_evt,
&reset_evt,
vmm_path,
)
.map_err(Error::DeviceManager)?;
let on_tty = unsafe { libc::isatty(libc::STDIN_FILENO as i32) } != 0;
let boot_vcpus = config.lock().unwrap().cpus.boot_vcpus;
let max_vcpus = config.lock().unwrap().cpus.max_vcpus;
let cpu_manager = cpu::CpuManager::new(
boot_vcpus,
max_vcpus,
&device_manager,
guest_memory,
fd,
cpuid,
reset_evt,
)
.map_err(Error::CpuManager)?;
Ok(Vm {
kernel,
device_manager,
config,
on_tty,
threads: Vec::with_capacity(1),
signals: None,
state: RwLock::new(VmState::Created),
cpu_manager,
memory_manager,
})
}
fn load_kernel(&mut self) -> Result<EntryPoint> {
let mut cmdline = Cmdline::new(arch::CMDLINE_MAX_SIZE);
cmdline
.insert_str(self.config.lock().unwrap().cmdline.args.clone())
.map_err(Error::CmdLineInsertStr)?;
for entry in self.device_manager.lock().unwrap().cmdline_additions() {
cmdline.insert_str(entry).map_err(Error::CmdLineInsertStr)?;
}
let cmdline_cstring = CString::new(cmdline).map_err(Error::CmdLineCString)?;
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
let mem = guest_memory.memory();
let entry_addr = match linux_loader::loader::Elf::load(
mem.deref(),
None,
&mut self.kernel,
Some(arch::layout::HIGH_RAM_START),
) {
Ok(entry_addr) => entry_addr,
Err(linux_loader::loader::Error::InvalidElfMagicNumber) => {
linux_loader::loader::BzImage::load(
mem.deref(),
None,
&mut self.kernel,
Some(arch::layout::HIGH_RAM_START),
)
.map_err(Error::KernelLoad)?
}
_ => panic!("Invalid elf file"),
};
linux_loader::loader::load_cmdline(
mem.deref(),
arch::layout::CMDLINE_START,
&cmdline_cstring,
)
.map_err(Error::LoadCmdLine)?;
let boot_vcpus = self.cpu_manager.lock().unwrap().boot_vcpus();
let _max_vcpus = self.cpu_manager.lock().unwrap().max_vcpus();
#[allow(unused_mut, unused_assignments)]
let mut rsdp_addr: Option<GuestAddress> = None;
#[cfg(feature = "acpi")]
{
rsdp_addr = Some(crate::acpi::create_acpi_tables(
mem.deref(),
&self.device_manager,
&self.cpu_manager,
&self.memory_manager,
));
}
match entry_addr.setup_header {
Some(hdr) => {
arch::configure_system(
&mem,
arch::layout::CMDLINE_START,
cmdline_cstring.to_bytes().len() + 1,
boot_vcpus,
Some(hdr),
rsdp_addr,
BootProtocol::LinuxBoot,
)
.map_err(Error::ConfigureSystem)?;
let load_addr = entry_addr
.kernel_load
.raw_value()
.checked_add(KERNEL_64BIT_ENTRY_OFFSET)
.ok_or(Error::MemOverflow)?;
Ok(EntryPoint {
entry_addr: GuestAddress(load_addr),
protocol: BootProtocol::LinuxBoot,
})
}
None => {
// Assume by default Linux boot protocol is used and not PVH
let mut entry_point_addr: GuestAddress = entry_addr.kernel_load;
let boot_prot = if entry_addr.pvh_entry_addr.is_some() {
// entry_addr.pvh_entry_addr field is safe to unwrap here
entry_point_addr = entry_addr.pvh_entry_addr.unwrap();
BootProtocol::PvhBoot
} else {
BootProtocol::LinuxBoot
};
arch::configure_system(
&mem,
arch::layout::CMDLINE_START,
cmdline_cstring.to_bytes().len() + 1,
boot_vcpus,
None,
rsdp_addr,
boot_prot,
)
.map_err(Error::ConfigureSystem)?;
Ok(EntryPoint {
entry_addr: entry_point_addr,
protocol: boot_prot,
})
}
}
}
pub fn shutdown(&mut self) -> Result<()> {
let mut state = self.state.try_write().map_err(|_| Error::PoisonedState)?;
let new_state = VmState::Shutdown;
state.valid_transition(new_state)?;
if self.on_tty {
// Don't forget to set the terminal in canonical mode
// before to exit.
io::stdin()
.lock()
.set_canon_mode()
.map_err(Error::SetTerminalCanon)?;
}
// Trigger the termination of the signal_handler thread
if let Some(signals) = self.signals.take() {
signals.close();
}
self.cpu_manager
.lock()
.unwrap()
.shutdown()
.map_err(Error::CpuManager)?;
// Wait for all the threads to finish
for thread in self.threads.drain(..) {
thread.join().map_err(Error::ThreadCleanup)?
}
*state = new_state;
Ok(())
}
pub fn resize(&mut self, desired_vcpus: Option<u8>, desired_memory: Option<u64>) -> Result<()> {
if let Some(desired_vcpus) = desired_vcpus {
if self
.cpu_manager
.lock()
.unwrap()
.resize(desired_vcpus)
.map_err(Error::CpuManager)?
{
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::CPU_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
self.config.lock().unwrap().cpus.boot_vcpus = desired_vcpus;
}
if let Some(desired_memory) = desired_memory {
if self
.memory_manager
.lock()
.unwrap()
.resize(desired_memory)
.map_err(Error::MemoryManager)?
{
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::MEMORY_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
// We update the VM config regardless of the actual guest resize operation
// result (true or false, happened or not), so that if the VM reboots it
// will be running with the last configure memory size.
self.config.lock().unwrap().memory.size = desired_memory;
}
Ok(())
}
pub fn add_device(&mut self, mut _device_cfg: DeviceConfig) -> Result<()> {
if cfg!(feature = "pci_support") {
#[cfg(feature = "pci_support")]
{
self.device_manager
.lock()
.unwrap()
.add_device(&mut _device_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(devices) = config.devices.as_mut() {
devices.push(_device_cfg);
} else {
config.devices = Some(vec![_device_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
Ok(())
} else {
Err(Error::NoPciSupport)
}
}
pub fn remove_device(&mut self, _id: String) -> Result<()> {
if cfg!(feature = "pci_support") {
#[cfg(feature = "pci_support")]
{
self.device_manager
.lock()
.unwrap()
.remove_device(_id.clone())
.map_err(Error::DeviceManager)?;
// Update VmConfig by removing the device. This is important to
// ensure the device would not be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(devices) = config.devices.as_mut() {
devices.retain(|dev| {
if let Some(dev_id) = &dev.id {
*dev_id != _id
} else {
true
}
});
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
Ok(())
} else {
Err(Error::NoPciSupport)
}
}
fn os_signal_handler(signals: Signals, console_input_clone: Arc<Console>, on_tty: bool) {
for signal in signals.forever() {
match signal {
SIGWINCH => {
let (col, row) = get_win_size();
console_input_clone.update_console_size(col, row);
}
SIGTERM | SIGINT => {
if on_tty {
io::stdin()
.lock()
.set_canon_mode()
.expect("failed to restore terminal mode");
}
std::process::exit((signal != SIGTERM) as i32);
}
_ => (),
}
}
}
pub fn boot(&mut self) -> Result<()> {
let current_state = self.get_state()?;
if current_state == VmState::Paused {
return self.resume().map_err(Error::Resume);
}
let new_state = VmState::Running;
current_state.valid_transition(new_state)?;
let entry_addr = self.load_kernel()?;
self.cpu_manager
.lock()
.unwrap()
.start_boot_vcpus(entry_addr)
.map_err(Error::CpuManager)?;
if self
.device_manager
.lock()
.unwrap()
.console()
.input_enabled()
{
let console = self.device_manager.lock().unwrap().console().clone();
let signals = Signals::new(&[SIGWINCH, SIGINT, SIGTERM]);
match signals {
Ok(signals) => {
self.signals = Some(signals.clone());
let on_tty = self.on_tty;
self.threads.push(
thread::Builder::new()
.name("signal_handler".to_string())
.spawn(move || Vm::os_signal_handler(signals, console, on_tty))
.map_err(Error::SignalHandlerSpawn)?,
);
}
Err(e) => error!("Signal not found {}", e),
}
if self.on_tty {
io::stdin()
.lock()
.set_raw_mode()
.map_err(Error::SetTerminalRaw)?;
}
}
let mut state = self.state.try_write().map_err(|_| Error::PoisonedState)?;
*state = new_state;
Ok(())
}
pub fn handle_stdin(&self) -> Result<()> {
let mut out = [0u8; 64];
let count = io::stdin()
.lock()
.read_raw(&mut out)
.map_err(Error::Console)?;
if self
.device_manager
.lock()
.unwrap()
.console()
.input_enabled()
{
self.device_manager
.lock()
.unwrap()
.console()
.queue_input_bytes(&out[..count])
.map_err(Error::Console)?;
}
Ok(())
}
/// Gets a thread-safe reference counted pointer to the VM configuration.
pub fn get_config(&self) -> Arc<Mutex<VmConfig>> {
Arc::clone(&self.config)
}
/// Get the VM state. Returns an error if the state is poisoned.
pub fn get_state(&self) -> Result<VmState> {
self.state
.try_read()
.map_err(|_| Error::PoisonedState)
.map(|state| *state)
}
}
impl Pausable for Vm {
fn pause(&mut self) -> std::result::Result<(), MigratableError> {
let mut state = self
.state
.try_write()
.map_err(|e| MigratableError::Pause(anyhow!("Could not get VM state: {}", e)))?;
let new_state = VmState::Paused;
state
.valid_transition(new_state)
.map_err(|e| MigratableError::Pause(anyhow!("Invalid transition: {:?}", e)))?;
self.cpu_manager.lock().unwrap().pause()?;
self.device_manager.lock().unwrap().pause()?;
*state = new_state;
Ok(())
}
fn resume(&mut self) -> std::result::Result<(), MigratableError> {
let mut state = self
.state
.try_write()
.map_err(|e| MigratableError::Resume(anyhow!("Could not get VM state: {}", e)))?;
let new_state = VmState::Running;
state
.valid_transition(new_state)
.map_err(|e| MigratableError::Pause(anyhow!("Invalid transition: {:?}", e)))?;
self.device_manager.lock().unwrap().resume()?;
self.cpu_manager.lock().unwrap().resume()?;
// And we're back to the Running state.
*state = new_state;
Ok(())
}
}
impl Snapshotable for Vm {}
impl Migratable for Vm {}
#[cfg(test)]
mod tests {
use super::*;
fn test_vm_state_transitions(state: VmState) {
match state {
VmState::Created => {
// Check the transitions from Created
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_err());
assert!(state.valid_transition(VmState::Paused).is_err());
}
VmState::Running => {
// Check the transitions from Running
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_err());
assert!(state.valid_transition(VmState::Shutdown).is_ok());
assert!(state.valid_transition(VmState::Paused).is_ok());
}
VmState::Shutdown => {
// Check the transitions from Shutdown
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_err());
assert!(state.valid_transition(VmState::Paused).is_err());
}
VmState::Paused => {
// Check the transitions from Paused
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_ok());
assert!(state.valid_transition(VmState::Paused).is_err());
}
}
}
#[test]
fn test_vm_created_transitions() {
test_vm_state_transitions(VmState::Created);
}
#[test]
fn test_vm_running_transitions() {
test_vm_state_transitions(VmState::Running);
}
#[test]
fn test_vm_shutdown_transitions() {
test_vm_state_transitions(VmState::Shutdown);
}
#[test]
fn test_vm_paused_transitions() {
test_vm_state_transitions(VmState::Paused);
}
}
#[allow(unused)]
pub fn test_vm() {
// This example based on https://lwn.net/Articles/658511/
let code = [
0xba, 0xf8, 0x03, /* mov $0x3f8, %dx */
0x00, 0xd8, /* add %bl, %al */
0x04, b'0', /* add $'0', %al */
0xee, /* out %al, (%dx) */
0xb0, b'\n', /* mov $'\n', %al */
0xee, /* out %al, (%dx) */
0xf4, /* hlt */
];
let mem_size = 0x1000;
let load_addr = GuestAddress(0x1000);
let mem = GuestMemoryMmap::from_ranges(&[(load_addr, mem_size)]).unwrap();
let kvm = Kvm::new().expect("new KVM instance creation failed");
let vm_fd = kvm.create_vm().expect("new VM fd creation failed");
mem.with_regions(|index, region| {
let mem_region = kvm_userspace_memory_region {
slot: index as u32,
guest_phys_addr: region.start_addr().raw_value(),
memory_size: region.len() as u64,
userspace_addr: region.as_ptr() as u64,
flags: 0,
};
// Safe because the guest regions are guaranteed not to overlap.
unsafe { vm_fd.set_user_memory_region(mem_region) }
})
.expect("Cannot configure guest memory");
mem.write_slice(&code, load_addr)
.expect("Writing code to memory failed");
let vcpu_fd = vm_fd.create_vcpu(0).expect("new VcpuFd failed");
let mut vcpu_sregs = vcpu_fd.get_sregs().expect("get sregs failed");
vcpu_sregs.cs.base = 0;
vcpu_sregs.cs.selector = 0;
vcpu_fd.set_sregs(&vcpu_sregs).expect("set sregs failed");
let mut vcpu_regs = vcpu_fd.get_regs().expect("get regs failed");
vcpu_regs.rip = 0x1000;
vcpu_regs.rax = 2;
vcpu_regs.rbx = 3;
vcpu_regs.rflags = 2;
vcpu_fd.set_regs(&vcpu_regs).expect("set regs failed");
loop {
match vcpu_fd.run().expect("run failed") {
VcpuExit::IoIn(addr, data) => {
println!(
"IO in -- addr: {:#x} data [{:?}]",
addr,
str::from_utf8(&data).unwrap()
);
}
VcpuExit::IoOut(addr, data) => {
println!(
"IO out -- addr: {:#x} data [{:?}]",
addr,
str::from_utf8(&data).unwrap()
);
}
VcpuExit::MmioRead(_addr, _data) => {}
VcpuExit::MmioWrite(_addr, _data) => {}
VcpuExit::Unknown => {}
VcpuExit::Exception => {}
VcpuExit::Hypercall => {}
VcpuExit::Debug => {}
VcpuExit::Hlt => {
println!("HLT");
}
VcpuExit::IrqWindowOpen => {}
VcpuExit::Shutdown => {}
VcpuExit::FailEntry => {}
VcpuExit::Intr => {}
VcpuExit::SetTpr => {}
VcpuExit::TprAccess => {}
VcpuExit::S390Sieic => {}
VcpuExit::S390Reset => {}
VcpuExit::Dcr => {}
VcpuExit::Nmi => {}
VcpuExit::InternalError => {}
VcpuExit::Osi => {}
VcpuExit::PaprHcall => {}
VcpuExit::S390Ucontrol => {}
VcpuExit::Watchdog => {}
VcpuExit::S390Tsch => {}
VcpuExit::Epr => {}
VcpuExit::SystemEvent => {}
VcpuExit::S390Stsi => {}
VcpuExit::IoapicEoi(_vector) => {}
VcpuExit::Hyperv => {}
}
// r => panic!("unexpected exit reason: {:?}", r),
}
}