Some addresses defined in `layout.rs` were of type `GuestAddress`, and
are `u64`. Now align the types of all the `*_START` definitions to
`GuestAddress`.
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
Compile this feature in by default as it's well supported on both
aarch64 and x86_64 and we only officially support using it (no non-acpi
binaries are available.)
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This can already be calculated by the summing the tables reported by the
Linux kernel but this is more convenient.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Relying on helpers for creating the ACPI tables and to add each table to
the HOB, this patch connects the dot to provide the set of ACPI tables
to the TD firmware.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The way to create ACPI tables for TDX is different as each table must be
passed through the HOB. This means the XSDT table is not required since
the firmware will take care of creating it. Same for RSDP, this is
firmware responsibility to provide it to the guest.
That's why this patch creates a TDX dedicated function, returning a list
of Sdt objects, which will let the calling code copy the content of each
table through the HOB.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This table is listed as required in the ARM Base Boot Requirements
document. The particular need arises to make the serial debugging of
Windows guest functional.
Signed-off-by: Anatol Belski <anbelski@linux.microsoft.com>
warning: unneeded late initalization
--> vmm/src/acpi.rs:525:5
|
525 | let mut prev_tbl_len: u64;
| ^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: `#[warn(clippy::needless_late_init)]` on by default
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_late_init
help: declare `prev_tbl_len` here
|
552 | let mut prev_tbl_len: u64 = madt.len() as u64;
| ~~~~~~~~~~~~~~~~~~~~~~~~~
warning: unneeded late initalization
--> vmm/src/acpi.rs:526:5
|
526 | let mut prev_tbl_off: GuestAddress;
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_late_init
help: declare `prev_tbl_off` here
|
553 | let mut prev_tbl_off: GuestAddress = madt_offset;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Added fields:
- `Memory address size limit`: the missing of this field triggered
warnings in guest kernel
- `Node ID`
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
In particular use the accessor for getting the device id from the bdf.
As a side effect the VIOT table is now segment aware.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Since we only support a single PCI bus right now advertise only a single
bus in the ACPI tables. This reduces the number of VM exits from probing
substantially.
Number of PCI config I/O port exits: 17871 -> 1551 (91% reduction) with
direct kernel boot.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This is to make sure the NUMA node data structures can be accessed
both from the `vmm` crate and `arch` crate.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
The optional Processor Properties Topology Table (PPTT) table is
used to describe the topological structure of processors controlled
by the OSPM, and their shared resources, such as caches. The table
can also describe additional information such as which nodes in the
processor topology constitute a physical package.
The ACPI PPTT table supports topology descriptions for ACPI guests.
Therefore, this commit adds the PPTT table for AArch64 to enable
CPU topology feature for ACPI.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
This new option allows the user to define a list of SGX EPC sections
attached to a specific NUMA node.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit introduces the `ProcessorGiccAffinity` struct for the
AArch64 platform. This struct will be created and included into
the SRAT table to enable AArch64 NUMA setup.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
Issue from beta verion of clippy:
error: field is never read: `type`
--> vmm/src/cpu.rs:235:5
|
235 | pub r#type: u8,
| ^^^^^^^^^^^^^^
|
= note: `-D dead-code` implied by `-D warnings`
Signed-off-by: Bo Chen <chen.bo@intel.com>
Since using the VIRTIO configuration to expose the virtual IOMMU
topology has been deprecated, the virtio-iommu implementation must be
updated.
In order to follow the latest patchset that is about to be merged in the
upstream Linux kernel, it must rely on ACPI, and in particular the newly
introduced VIOT table to expose the information about the list of PCI
devices attached to the virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
As the first step to complete live-migration with tracking dirty-pages
written by the VMM, this commit patches the dependent vm-memory crate to
the upstream version with the dirty-page-tracking capability. Most
changes are due to the updated `GuestMemoryMmap`, `GuestRegionMmap`, and
`MmapRegion` structs which are taking an additional generic type
parameter to specify what 'bitmap backend' is used.
The above changes should be transparent to the rest of the code base,
e.g. all unit/integration tests should pass without additional changes.
Signed-off-by: Bo Chen <chen.bo@intel.com>
This commit enables the PSCI (Power State Coordination Interface)
for the AArch64 platform, which allows the VMM to manage the power
status of the guest. Also, multiple vCPUs can be brought up using
PSCI.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
This commit implements the IO Remapping Table (IORT) for AArch64.
The IORT is one of the required ACPI table for AArch64, since
it describes the GICv3ITS node.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
This commit implements an AArch64-required ACPI table: Serial
Port Console Redirection Table (SPCR). The table provides
information about the configuration and use of the serial port
or non-legacy UART interface.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
This commit implements an AArch64-specific ACPI table: Generic
Timer Description Table (GTDT). The GTDT provides OSPM with
information about a system’s Generic Timers configuration.
The Generic Timer (GT) is a standard timer interface implemented
on ARM processor-based systems.
Signed-off-by: Henry Wang <Henry.Wang@arm.com>
Added the final PCI bus number in MCFG table. This field is mandatory on
AArch64. On X86 it is optional.
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
Before this change, the FDT was loaded at the end of RAM. The address of
FDT was not fixed.
While UEFI (edk2 now) requires fixed address to find FDT and RSDP.
Now the FDT is moved to the beginning of RAM, which is a fixed address.
RSDP is wrote to 2 MiB after FDT, also a fixed address.
Kernel comes 2 MiB after RSDP.
Signed-off-by: Michael Zhao <michael.zhao@arm.com>
warning: name `LocalAPIC` contains a capitalized acronym
--> vmm/src/cpu.rs:197:8
|
197 | struct LocalAPIC {
| ^^^^^^^^^ help: consider making the acronym lowercase, except the initial letter: `LocalApic`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#upper_case_acronyms
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
error: name `SDT` contains a capitalized acronym
--> acpi_tables/src/sdt.rs:27:12
|
27 | pub struct SDT {
| ^^^ help: consider making the acronym lowercase, except the initial letter: `Sdt`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#upper_case_acronyms
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This skeleton commit brings in the support for compiling aarch64 with
the "acpi" feature ready to the ACPI enabling. It builds on the work to
move the ACPI hotplug devices from I/O ports to MMIO and conditionalises
any code that is x86_64 only (i.e. because it uses an I/O port.)
Filling in the aarch64 specific details in tables such as the MADT it
out of the scope.
See: #2178
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Since Cloud-Hypervisor currently support one single PCI bus, we must
reflect this through the MCFG table, as it advertises the first bus and
the last bus available. In this case both are bus 0.
This patch saves quite some time during guest kernel boot, as it
prevents from checking each bus for available devices.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
virtio-mem device would use 'VIRTIO_MEM_F_ACPI_PXM' to add memory to NUMA
node, which MUST be existed, otherwise it will be assigned to node id 0,
even if user specify different node id.
According ACPI spec about Memory Affinity Structure, system hardware
supports hot-add memory region using 'Hot Pluggable | Enabled' flags.
Signed-off-by: Jiangbo Wu <jiangbo.wu@intel.com>
Based on the previous changes introducing new options for both memory
zones and NUMA configuration, this patch changes the behavior of the
NUMA node definition. Instead of relying on the memory zones to define
the guest NUMA nodes, everything goes through the --numa parameter. This
allows for defining NUMA nodes without associating any particular memory
range to it. And in case one wants to associate one or multiple memory
ranges to it, the expectation is to describe a list of memory zone
through the --numa parameter.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
By introducing the SLIT (System Locality Distance Information Table), we
provide the guest with the distance between each node. This lets the
user describe the NUMA topology with a lot of details so that slower
memory backing the VM can be exposed as being further away from other
nodes.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on the list of CPUs related to each NUMA node, Processor Local
x2APIC Affinity structures are created and included into the SRAT table.
This describes which CPUs are part of each node.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The SRAT table (System Resource Affinity Table) is needed to describe
NUMA nodes and how memory ranges and CPUs are attached to them.
For now it simply attaches a list of Memory Affinity structures based on
the list of NUMA nodes created from the VMM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Ensure that the width of the I/O port is correctly set to 32-bits in the
generic address used for the X_PM_TMR_BLK. Do this by type
parameterising GenericAddress::io_port_address() fuction.
TEST=Boot with clocksource=acpi_pm and observe no errors in the dmesg.
Fixes: #1496
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This is a counter exposed via an I/O port that runs at 3.579545MHz. Here
we use a hardcoded I/O and expose the details through the FADT table.
TEST=Boot Linux kernel and see the following in dmesg:
[ 0.506198] clocksource: acpi_pm: mask: 0xffffff max_cycles: 0xffffff, max_idle_ns: 2085701024 ns
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The IORT table for virtio-iommu use was removed and replaced with a
purely virtio based solution. Although the table construction was
removed these structures were left behind.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
In anticipation of the support for device hotplug, this commit moves the
DeviceManager object into an Arc<Mutex<>> when the DeviceManager is
being created. The reason is, we need the DeviceManager to implement the
BusDevice trait and then provide it to the IO bus, so that IO accesses
related to device hotplug can be handled correctly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Instead of relying on the ACPI tables to describe the devices attached
to the virtual IOMMU, let's use the virtio topology, as the ACPI support
is getting deprecated.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Generate and expose the DSDT table entries required to support memory
hotplug. The AML methods call into the MemoryManager via I/O ports
exposed as fields.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Because virtio-iommu is still evolving (as it's only partly upstream),
some pieces like the ACPI declaration of the different nodes and devices
attached to the virtual IOMMU are changing.
This patch introduces a new ACPI table called VIOT, standing as the high
level table overseeing the IORT table and associated subtables.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Move the code for handling the creation of the DSDT entries for devices
into the DeviceManager.
This will make it easier to handle device hotplug and also in the future
remove some hardcoded ACPI constants.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Move the code for generating the MADT (APIC) table and the DSDT
generation for CPU related functionality into the CpuManager.
There is no functional change just code rearrangement.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This was causing issues when the kernel was trying to reset the
interrupt and making the reboot fail.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>