Currently only increasing the number of vCPUs is supported but in the
future it will be extended.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The MADT table contains the details of all the potential vCPUs and
whether they are present at boot (as indicated by the flags field.)
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
When initialising the ACPI tables and configuring the VM use the new
accessor on the CpuManager to get the number of boot vCPUs.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Since the kvm crates now depend on vmm-sys-util, the bump must be
atomic.
The kvm-bindings and ioctls 0.2.0 and 0.4.0 crates come with a few API
changes, one of them being the use of a kvm_ioctls specific error type.
Porting our code to that type makes for a fairly large diff stat.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In case the VM is started with the flag "--memory mergeable=on", it
means the user expects the guest RAM pages to be marked as mergeable.
This commit relies on the madvise(MADV_MERGEABLE) system call to inform
the host kernel about these pages.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Move CpuManager, Vcpu and related functionality to its own module (and
file) inside the VMM crate
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Pull details of vCPU management (booting, pausing, resuming, shutdown)
into it's own structure. This will ultimately enable this to be moved to
its own file and encapsulate all the vCPU handling for the VMM.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Remove ACPI table creation from arch crate to the vmm crate simplifying
arch::configure_system()
GuestAddress(0) is used to mean no RSDP table rather than adding
complexity with a conditional argument or an Option type as it will
evaluate to a zero value which would be the default anyway.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
We need to rely on the latest kvm-ioctls version to benefit from the
recent addition of unregister_ioevent(), allowing us to detach a
previously registered eventfd to a PIO or MMIO guest address.
Because of this update, we had to modify the current constraint we had
on the vmm-sys-util crate, using ">= 0.1.1" instead of being strictly
tied to "0.2.0".
Once the dependency conflict resolved, this commit took care of fixing
build issues caused by recent modification of kvm-ioctls relying on
EventFd reference instead of RawFd.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to reuse the SystemAllocator later at runtime, it is moved into
the new structure AddressManager. The goal is to have a hold onto the
SystemAllocator and both IO and MMIO buses so that we can use them
later.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
We should return an explicit error when the transition from on VM state
to another is invalid.
The valid_transition() routine for the VmState enum essentially
describes the VM state machine.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to pause a VM, we signal all the vCPU threads to get them out
of vmx non-root. Once out, the vCPU thread will check for a an atomic
pause boolean. If it's set to true, then the thread will park until
being resumed.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
So that we don't need to forward an ExitBehaviour up to the VMM thread.
This simplifies the control loop and the VMM thread even further.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This commit is the glue between the virtio-pci devices attached to the
vIOMMU, and the IORT ACPI table exposing them to the guest as sitting
behind this vIOMMU.
An important thing is the trait implementation provided to the virtio
vrings for each device attached to the vIOMMU, as they need to perform
proper address translation before they can access the buffers.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The virtual IOMMU exposed through virtio-iommu device has a dependency
on ACPI. It needs to expose the device ID of the virtio-iommu device,
and all the other devices attached to this virtual IOMMU. The IDs are
expressed from a PCI bus perspective, based on segment, bus, device and
function.
The guest relies on the topology description provided by the IORT table
to attach devices to the virtio-iommu device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
We used to have errors definitions spread across vmm, vm, api,
and http.
We now have a cleaner separation: All API routines only return an
ApiResult. All VM operations, including the VMM wrappers, return a
VmResult. This makes it easier to carry errors up to the HTTP caller.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The linux_loader crate Cmdline struct is not serializable.
Instead of forcing the upstream create to carry a serde dependency, we
simply use a String for the passed command line and build the actual
CmdLine when we need it (in vm::new()).
Also, the cmdline offset is not a configuration knob, so we remove it.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The kernel path was the only mandatory command line option.
With the addition of the --api-socket option, we can run without a
kernel path and get it later through the API.
Since we can end up with VM configurations that are no longer valid by
default, we need to provide a validation check for it. For now, if the
kernel path is not defined, the VM configuration is invalid.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Using the existing layout module start documenting the major regions of
RAM and those areas that are reserved. Some of the constants have also
been renamed to be more consistent and some functions that returned
constant variables have been replaced.
Future commits will move more constants into this file to make it the
canonical source of information about the memory layout.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
We now start the main VMM thread, which will be listening for VM and IPC
related events.
In order to start the configured VM, we no longer directly call the VM
API but we use the IPC instead, to first create and then start a VM.
Fixes: #303
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The VMM thread and control loop will be the sole consumer of the
EpollContext and EpollDispatch API, so let's move it to lib.rs.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
As we're going to move the control loop to the VMM thread, the exit and
reset EventFds are no longer going to be owned by the VM.
We pass a copy of them when creating the Vm instead.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to handle the VM STDIN stream from a separate VMM thread
without having to export the DeviceManager, we simply add a console
handling method to the Vm structure.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to transfer the control loop to a separate VMM thread, we want
to shrink the VM control loop to a bare minimum.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Once passed to the VM creation routine, a VmConfig structure is
immutable. We can simply carry a Arc of it instead of a reference.
This also allows us to remove any lifetime bound from our VM.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The Vmm structure is just a placeholder for the KVM instance. We can
create it directly from the VM creation routine instead.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We can integrate the kernel loading into the VM start method.
The VM start flow is then: Vm::new() -> vm.start(), which feels more
natural.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Convert Path to PathBuf and remove the associated lifetime.
Now we can remove the VmConfig associated lifetime.
Fixes#298
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Probe for the size of the host physical address range and use that to
establish the address range for the VM. This removes the limitation on
the size of the VM RAM and gives more space for the devices.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
After the 32-bit gap the memory is shared between the devices and the
RAM. Ensure that the ACPI tables correctly indicate where the RAM ends
and the device area starts by patching the precompiled tables. We get
the following valid output now from the PCI bus probing (8GiB guest)
[ 0.317757] pci_bus 0000:00: resource 4 [io 0x0000-0x0cf7 window]
[ 0.319035] pci_bus 0000:00: resource 5 [io 0x0d00-0xffff window]
[ 0.320215] pci_bus 0000:00: resource 6 [mem 0x000a0000-0x000bffff window]
[ 0.321431] pci_bus 0000:00: resource 7 [mem 0xc0000000-0xfebfffff window]
[ 0.322613] pci_bus 0000:00: resource 8 [mem 0x240000000-0xfffffffff window]
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Rather than calling it at the very start of the VM execution (i.e. when
the VCPUs are created) do it as part of the DeviceManager creation.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Rather than sending a signal to the signal handler used for handling
SIGWINCH calls instead use the crate provided termination method. This
also unregisters the signal handler which also means that there won't be
a leaked signal handler remaining.
This leaked signal handler is what was causing a failure to cleanup up
the thread on subsequent requests breaking two reboots in a row.
Fixes: #252
Signed-off-by: Rob Bradford <robert.bradford@intel.com>