This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
It is based off the name from the virtio device attached to this
transport layer.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Because we know we will need every virtio device to be identified with a
unique id, we can simplify the code by making the identifier mandatory.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This identifier is chosen from the DeviceManager so that it will manage
all identifiers across the VM, which will ensure uniqueness.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Even in the context of "mmio" feature, we need the next device name to
be generated as we need to identify virtio-mmio devices to support
snapshot and restore functionalities.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This will be later used to identify each device used by the VM in order
to perform introspection and snapshot/restore properly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This will be later used to identify each device used by the VM in order
to perform introspection and snapshot/restore properly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This will be later used to identify each device used by the VM in order
to perform introspection and snapshot/restore properly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This will be later used to identify each device used by the VM in order
to perform introspection and snapshot/restore properly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This will be later used to identify each device used by the VM in order
to perform introspection and snapshot/restore properly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
If the virtio-console device is supposed to be placed behind the virtual
IOMMU, this must be explicitly propagated through the code.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
If the virtio-rng device is supposed to be placed behind the virtual
IOMMU, this must be explicitly propagated through the code.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
If the virtio-vsock device is supposed to be placed behind the virtual
IOMMU, this must be explicitly propagated through the code.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that all virtio devices are assigned with identifiers, they could
all be removed from the VM. This is not something that we want to allow
because it does not make sense for some devices. That's why based on the
device type, we remove the device or we return an error to the user.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
By giving the devices ids this effectively enables the removal of the
device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The parameters regarding the attachment to the virtio-iommu device was
not propagated correclty, and any modification to the configuration was
not stored back into it.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
It's possible to have multiple vsock devices so in preparation for
hotplug/unplug it is important to be able to have a unique identifier
for each device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
If the current state is paused that means most of the handles got killed by pthread_kill
We need to unpark those threads to make the shutdown worked. Otherwise
The shutdown API hangs and the API is not responding afterwards. So
before the shutdown call we need to resume the VM make it succeed.
Fixes: #817
Signed-off-by: Muminul Islam <muislam@microsoft.com>
If a size is specified use it (in particular this is required if the
destination is a directory) otherwise seek in the file to get the size
of the file.
Add a new check that the size is a multiple of 2MiB otherwise the kernel
will reject it.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Check that if any device using vhost-user (net & disk with
vhost_user=true) or virtio-fs is enabled then check shared memory is
also enabled.
Fixes: #848
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The new 'shared' and 'hugepages' controls aim to replace the 'file'
option in MemoryConfig. This patch also updated all related integration
tests to use the new controls (instead of providing explicit paths to
"/dev/shm" or "/dev/hugepages").
Fixes: #1011
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Signed-off-by: Bo Chen <chen.bo@intel.com>
Replace alignment calculation of start address with functionally
equivalent version that does not assume that the block size is a power
of two.
Signed-off-by: Martin Xu <martin.xu@intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
When a virtio device is dynamically removed from the VM through the
hot-unplug mechanism, every mapping associated with it must be properly
removed.
Based on the previous patches letting a VirtioDevice expose the list of
userspace mappings associated with it, this patch can now remove all the
KVM userspace memory regions through the MemoryManager.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The same way we added a helper for creating userspace memory mappings
from the MemoryManager, this patch adds a new helper to remove some
previously added mappings.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
When hot-unplugging the virtio-pmem from the VM, we don't remove the
associated userspace mapping. This patch will let us fix this in a
following patch. For now, it simply adapts the code so that the Pmem
device knows about the mapping associated with it. By knowing about it,
it can expose it to the caller through the new userspace_mappings()
function.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The hotplugged virtio devices were not added to the list of virtio
devices from the DeviceManager. This patch fixes it, as it was causing
hotplugged virtio-fs devices from not supporting memory hotplug, since
they were never getting the update as they were not part of the list of
virtio devices held by the DeviceManager.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adds DeviceManager method `make_virtio_fs_device` which creates a single
device, and modifies `make_virtio_fs_devices` to use this method.
Implements the new `vm.add-fs route`.
Signed-off-by: Dean Sheather <dean@coder.com>
Currently unimplemented. Once implemented, this API will allow for
creating virtio-fs devices in the VM after it has booted.
Signed-off-by: Dean Sheather <dean@coder.com>
In the context of the shared memory region used by virtio-fs in order to
support DAX feature, the shared region is exposed as a dedicated PCI
BAR, and it is backed by a KVM userspace mapping.
Upon BAR remapping, the BAR is moved to a different location in the
guest address space, and the KVM mapping must be updated accordingly.
Additionally, we need the VirtioDevice to report the updated guest
address through the shared memory region returned by get_shm_regions().
That's why a new setter is added to the VirtioDevice trait, so that
after the mapping has been updated for KVM, we can tell the VirtioDevice
the new guest address the shared region is located at.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The order the elements are pushed into the list is important to restore
them in the right order. This is particularly important for MmioDevice
(or VirtioPciDevice) and their VirtioDevice counterpart.
A device must be fully ready before its associated transport layer
management can trigger its restoration, which will end up activating the
device in most cases.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
OVMF and other standard firmwares use I/O port 0x402 as a simple debug
port by writing ASCII characters to it. This is gated under a feature
that is not enabled by default.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
We now support assigning device ids for VFIO and virtio-pci devices so
this error can be generalised.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Extend the eject_device() method on DeviceManager to also support
virtio-pci devices being unplugged.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
In order to support hotplugging there is a map of human readable device
id to PCI BDF map.
As the device id is part of the specific device configuration (e.g.
NetConfig) it is necessary to return the id through from the helper
functions that create the devices through to the functions that add
those devices to the bus. This necessitates changing a great deal of
function prototypes but otherwise has little impact.
Currently only if an id is supplied by the user as part of the device
configuration is it populated into this map. A later commit will
populate with an autogenerated name where none is supplied by the user.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Now that ownership of the memory regions used for the virtio-pmem and
vhost-user-fs devices have been moved into those devices it is no longer
necessary to track them inside DeviceManager.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Move the release of the managed memory region from the DeviceManager to
the vhost-user-fs device. This ensures that the memory will be freed when
the device is unplugged which will lead to it being Drop()ed.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Move the release of the managed memory region from the DeviceManager to
the virtio-pmem device. This ensures that the memory will be freed when
the device is unplugged which will lead to it being Drop()ed.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
While testing self spawned vhost-user backends, it appeared that the
backend was aborting due to a missing system call in the seccomp
filters. mremap() was the culprit and this patch simply adds it to the
whitelist.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This should make it a pointer in the Go generated code so that it will
be ommitted and thus not populated with an unhelpful default value.
Fixes: #1015
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This ensures that the field is filled with None when it is not specified
as part of the deserialisation step.
Fixes: #1015
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
We can now allow guests that specify an initramfs to boot
using the PVH boot protocol.
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
This allows the validation of this requirement for both command line
booted VMs and those booted via the API.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This allows the validation of this requirement for both command line
booted VMs and those booted via the API.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Replace the existing VmConfig::valid() check with a call into
.validate() as part of earlier config setup or boot API checks.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
When performing an API boot validate the configuration. For now only
some very basic validation is performed but in subsequent commits
the validation will be extended.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The configuration comes from a variety of places (commandline, REST API
and restore) however some validation was only happening on the command
line parsing path. Therefore introduce a new ability to validate the
configuration before proceeding so that this can be used for commandline
and API boots.
For now move just the console and serial output mode validation under
the new validation API.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Making sure the OpenAPI definition is up to date with newly added
structure and parameters to support VM restoration.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that the restore path uses RestoreConfig structure, we add a new
parameter called "prefault" to it. This will give the user the ability
to populate the pages corresponding to the mapped regions backed by the
snapshotted memory files.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The goal here is to move the restore parameters into a dedicated
structure that can be reused from the entire codebase, making the
addition or removal of a parameter easier.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
When CoW can be used, the VM restoration time is reduced, but the pages
are not populated. This can lead to some slowness from the guest when
accessing these pages.
Depending on the use case, we might prefer a slower boot time for better
performances from guest runtime. The way to achieve this is to prefault
the pages in this case, using the MAP_POPULATE flag along with CoW.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This patch extends the previous behavior on the restore codepath.
Instead of copying the memory regions content from the snapshot files
into the new memory regions, the VMM will use the snapshot region files
as the backing files behind each mapped region. This is done in order to
reduce the time for the VM to be restored.
When the source VM has been initially started with a backing file, this
means it has been mapped with the MAP_SHARED flag. For this case, we
cannot use the CoW trick to speed up the VM restore path and we simply
fallback onto the copy of the memory regions content.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Whenever a MemoryManager is restored from a snapshot, the memory regions
associated with it might need to directly back the mapped memory for
increased performances. If that's the case, a list of external regions
is provided and the MemoryManager should simply ignore what's coming
from the MemoryConfig.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that we can choose specific mmap flags for the guest RAM, we create
a new parameter "copy_on_write" meaning that the memory mappings backed
by a file should be performed with MAP_PRIVATE instead of MAP_SHARED.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to anticipate the need for special mmap flags when memory
mapping the guest RAM, we need to switch from from_file() wrapper to
build() wrapper.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
A few KVM ioctls were missing in order to perform both snapshot and
restore while keeping seccomp enabled.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This connects the dots together, making the request from the user reach
the actual implementation for restoring the VM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This connects the dots together, making the request from the user reach
the actual implementation for snapshotting the VM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The MemoryManager is somehow a special case, as its restore() function
was not implemented as part of the Snapshottable trait. Instead, and
because restoring memory regions rely both on vm.json and every memory
region snapshot file, the memory manager is restored at creation time.
This makes the restore path slightly different from CpuManager, Vcpu,
DeviceManager and Vm, but achieve the correct restoration of the
MemoryManager along with its memory regions filled with the correct
content.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
This is only implementing the send() function in order to store all Vm
states into a file.
This needs to be extended for live migration, by adding more transport
methods, and also the recv() function must be implemented.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
By aggregating snapshots from the CpuManager, the MemoryManager and the
DeviceManager, Vm implements the snapshot() function from the
Snapshottable trait.
And by restoring snapshots from the CpuManager, the MemoryManager and
the DeviceManager, Vm implements the restore() function from the
Snapshottable trait.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
This implements the send() function of the Transportable trait, so that
the guest memory regions can be saved into one file per region.
This will need to be extended for live migration, as it will require
other transport methods and the recv() function will need to be
implemented too.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to snapshot the content of the guest RAM, the MemoryManager
must implement the Snapshottable trait.
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Implement the Snapshottable trait for Vcpu, and then implements it for
CpuManager. Note that CpuManager goes through the Snapshottable
implementation of Vcpu for every vCPU in order to implement the
Snapshottable trait for itself.
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Anticipating the need for a slightly different function for restoring
vCPUs, this patch factorizes most of the vCPU creation, so that it can
be reused for migration purposes.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
These two new helpers will be useful to capture a vCPU state and being
able to restore it at a later time.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In anticipation for the CpuManager to aggregate all Vcpu snapshots
together, this change makes sure the CpuManager has a handle onto
every vCPU.
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Based on the list of Migratable devices stored by the DeviceManager, the
DeviceManager can implement the Snapshottable trait by aggregating all
devices snapshots together.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Serial and Ioapic both implement the Migratable trait, hence the
DeviceManager can store them in the list of Migratable devices.
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
The parse_size helper function can now be consolidated into the
ByteSized FromStr implementation.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Now all parsing code makes use of the Toggle and it's FromStr support
move the helper function into the from_str() implementation.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The integration tests and documentation make use of empty value strings
like "--net tap=" accept them but return None so that the default value
will be used as expected.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This simplifies the parsing of the option by using OptionParser along
with its automatic conversion behaviour.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Byte sizes are quantities ending in "K", "M", "G" and by implementing
this type with a FromStr implementation the values can be converted
using .parse().
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Before porting over to OptionParser add a unit test to validate the
current memory parsing code. This showed up a bug where the "size=" was
always required. Temporarily resolve this by assigning the string a
default value which will later be replaced when the code is refactored.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This will be used to simplify and consolidate much of the parsing code
used for command line parameters.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
A Snapshottable component can snapshot itself and
provide a MigrationSnapshot payload as a result.
A MigrationSnapshot payload is a map of component IDs to a list of
migration sections (MigrationSection). As component can be made of
several Migratable sub-components (e.g. the DeviceManager and its
device objects), a migration snapshot can be made of multiple snapshot
itself.
A snapshot is a list of migration sections, each section being a
component state snapshot. Having multiple sections allows for easier and
backward compatible migration payload extensions.
Once created, a migratable component snapshot may be transported and this
is what the Transportable trait defines, through 2 methods: send and recv.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
On some systems, the open() system call is used by Cloud-Hypervisor,
that's why it should be part of the seccomp filters whitelist.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Both clock_gettime and gettimeofday syscalls where missing when running
Cloud-Hypervisor on a Linux host without vDSO enabled. On a system with
vDSO enabled, the syscalls performed by vDSO were not filtered, that's
why we didn't have to whitelist them.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Extend the update_memory() method from DeviceManager so that VFIO PCI
devices can update their DMA mappings to the physical IOMMU, after a
memory hotplug has been performed.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Whenever the memory is resized, it's important to retrieve the new
region to pass it down to the device manager, this way it can decide
what to do with it.
Also, there's no need to use a boolean as we can instead use an Option
to carry the information about the region. In case of virtio-mem, there
will be no region since the whole memory has been reserved up front by
the VMM at boot. This means only the ACPI hotplug will return a region
and is the only method that requires the memory to be updated from the
device manager.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Commit 2adddce2 reorganized the crate for a cleaner multi architecture
(x86_64 and aarch64) support.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
For now, the codebase does not support booting from initramfs with PVH
boot protocol, therefore we need to fallback to the legacy boot.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
* load the initramfs File into the guest memory, aligned to page size
* finally setup the initramfs address and its size into the boot params
(in configure_64bit_boot)
Signed-off-by: Damjan Georgievski <gdamjan@gmail.com>
currently unused, the initramfs argument is added to the cli,
and stored in vmm::config:VmConfig as an Option(InitramfsConfig(PathBuf))
Signed-off-by: Damjan Georgievski <gdamjan@gmail.com>
The persistent memory will be hotplugged via DeviceManager and saved in
the config for later use.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Split it into a method that creates a single device which is called by
the multiple device version so this can be used when dynamically adding
a device.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This commit adds new option hotplug_method to memory config.
It can set the hotplug method to "acpi" or "virtio-mem".
Signed-off-by: Hui Zhu <teawater@antfin.com>
The persistent memory will be hotplugged via DeviceManager and saved in
the config for later use.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Split it into a method that creates a single device which is called by
the multiple device version so this can be used when dynamically adding
a device.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Split it into a method that creates a single device which is called by
the multiple device version so this can be used when dynamically adding
a device.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Whenever the VM memory is resized, DeviceManager needs to be notified
so that it can subsequently notify each virtio devices about it.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This separates the filters used between the VMM and API threads, so that
we can apply different rules for each thread.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit introduces the application of the seccomp filter to the VMM
thread. The filter is empty for now (SeccompLevel::None).
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on the seccomp crate, we create a new vmm module responsible for
creating a seccomp filter that will be applied to the VMM main thread.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This opens the backing file read-only, makes the pages in the mmap()
read-only and also makes the KVM mapping read-only. The file is also
mapped with MAP_PRIVATE to make the changes local to this process only.
This is functional alternative to having support for making a
virtio-pmem device readonly. Unfortunately there is no concept of
readonly virtio-pmem (or any type of NVDIMM/PMEM) in the Linux kernel so
to be able to have a block device that is appears readonly in the guest
requires significant specification and kernel changes.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Use this boolean to turn on the KVM_MEM_READONLY flag to indicate that
this memory mapping should not be writable by the VM.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
According to `asm-generic/termios.h`, the `struct winsize` should be:
struct winsize {
unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel;
unsigned short ws_ypixel;
};
The ioctl of TIOCGWINSZ will trigger a segfault on aarch64.
Signed-off-by: Qiu Wenbo <qiuwenbo@phytium.com.cn>
This feature is stable and there is no need for this to be behind a
flag. This will also reduce the time needed to run the integration test
as we will not be running them all again under the flag.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This table currently contains only all the VFIO devices and it should
really contain all the PCI devices.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Previously this was only returned if the device had an IOMMU mapping and
whether the device should be added to the virtio-iommu. This was already
captured earlier as part of creating the device so use that information
instead.
Always returning the B/D/F is helpful as it facilitates virtio PCI
device hotplug.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
I spent a few minutes trying to understand why we were unconditionally
updating the VM config memory size, even if the guest memory resizing
did not happen.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The IORT table for virtio-iommu use was removed and replaced with a
purely virtio based solution. Although the table construction was
removed these structures were left behind.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Fill the hvm_start_info and related memory map structures as
specified in the PVH boot protocol. Write the data structures
to guest memory at the GPA that will be stored in %rbx when
the guest starts.
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
In order to properly initialize the kvm regs/sregs structs for
the guest, the load_kernel() return type must specify which
boot protocol to use with the entry point address it returns.
Make load_kernel() return an EntryPoint struct containing the
required information. This structure will later be used
in the vCPU configuration methods to setup the appropriate
initial conditions for the guest.
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
When using "--disk" with a vhost socket and not using self spawning then
it is not necessary or helpful to specify the path.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
By using a Vec to hold the list of devices on the PciBus, there's a
problem when we use unplug. Indeed, the vector of devices gets reduced
and if the unplugged device was not the last one from the list, every
other device after this one is shifted on the bus.
To solve this problem, a HashMap is used. This allows to keep track of
the exact place where each device stands on the bus.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The option desired_ram is in byte, make larger the amount of memory to
add.
Signed-off-by: Jose Carlos Venegas Munoz <jose.carlos.venegas.munoz@intel.com>
With some of the factorization that happened to be able to support VFIO
hotplug, one mistake was made. In case a vIOMMU is created through a
virtio-iommu device, and no matter the "iommu" option value from the
VFIO device parameter, the VFIO device was always placed behind the
virtual IOMMU.
This commit fixes this wrong behavior by making sure the device
configuration is taken into account to decide if it should be attached
or not to the virtual IOMMU.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Add a new id option to the VFIO hotplug command so that it matches the
VFIO coldplug semantic.
This is done by refactoring the existing code for VFIO hotplug, where
VmAddDeviceData structure is replaced by DeviceConfig. This structure is
the one used whenever a VFIO device is coldplugged, which is why it
makes sense to reuse it for the hotplug codepath.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Add the ability to specify the "id" associated with a device, by adding
an extra option to the parameter --device.
This new option is not mandatory, and by default, the VMM will take care
of finding a unique identifier.
If the identifier provided by the user through this new option is not
unique, an error will be thrown and the VM won't be started.
Fixes#881
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The 32 bits MMIO address space is handled separately from the 64 bits
one. For this reason, we need to invoke the appropriate freeing function
to remove a range from this address space.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that PciDevice trait has a dedicated function to remove the bars,
the DeviceManager can invoke this function whenever a PCI device is
unplugged from the VM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Upon removal of a PCI device, make sure we don't hold onto the device ID
as it could be reused for another device later.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to handle the case where devices are very often plugged and
unplugged from a VM, we need to handle the PCI device ID allocation
better.
Any PCI device could be removed, which means we cannot simply rely on
the vector size to give the next available PCI device ID.
That's why this patch stores in memory the information about the 32
slots availability. Based on this information, whenever a new slot is
needed, the code can correctly provide an available ID, or simply return
an error because all slots are taken.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit ensures that when a VFIO device is hot-unplugged from the
VM, it is also removed from the VmConfig. This prevents a potential
reboot from creating the device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Add a new field to the DeviceConfig, allowing the VMM to allocate a name
to the VFIO devices.
By identifying a VFIO device with a unique name, we can make sure a user
can properly unplug it at any time.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit introduces the new command "remove-device" that will let a
user hot-unplug a VFIO PCI device from an already running VM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit implements the eject function so that a VFIO device will be
removed from any bus it might sit on, and from any list it might be
stored in.
The idea is to reach a point where there is no reference of the device
anywhere in the code, so that the Drop implementation will be invoked
and so that the device will be fully removed from the VMM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
When the guest OS is done removing a PCI device, it will invoke the _EJ0
method from ACPI, associated with the device. This will trigger a port
IO write to a region known by the VMM. Upon this writing, the VMM will
trap the VM exit and retrieve the written value.
Based on the value, the VMM will invoke its eject_device() method to
finalize the removal of the device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
As we try to keep track of every PCI device related to the VM, we don't
want to have separate lists depending on the concrete type associated
with the PciDevice trait. Also, we want to be able to cast the actual
type into any trait or concrete type.
The most efficient way to solve all these issues is to store every
device as an Arc<dyn Any + Send + Sync>. This gives the ability to
downcast into the appropriate concrete type, and then to cast back into
any trait that we might need.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Add a new list storing the device names across the entire codebase. VFIO
devices are added to the list whenever a new one is created. By default,
each VFIO device is given a name "vfioX" where X is the first available
integer.
Along with this new list of names, another list is created, grouping PCI
device's name with its associated b/d/f. This will be useful to keep
track of the created devices so that we can implement unplug
functionality.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The Vm structure was used to store a strong reference to the IO bus.
This is not needed anymore since the AddressManager is logically the
one holding this strong reference. This has been made possible by the
introduction of Weak references on the Bus structure itself.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that the BusDevice devices are stored as Weak references by the
IO and MMIO buses, there's no need to use Weak references from the
DeviceManager anymore.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that the BusDevice devices are stored as Weak references by the
IO and MMIO buses, there's no need to use Weak references from the
CpuManager anymore.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that the BusDevice devices are stored as Weak references by the IO
and MMIO buses, there's no need to use Weak references from the PciBus
anymore.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The point is to make sure the DeviceManager holds a strong reference of
each BusDevice inserted on the IO and MMIO buses. This will allow these
buses to hold Weak references onto the BusDevice devices.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The method add_vfio_device() from the DeviceManager needs to be mutable
if we want later to be able to update some internal fields from the
DeviceManager from this same function.
This commit simply takes care of making the necessary changes to change
this function as mutable.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
It's more logical to name the field referring to the DeviceManager as
"device_manager" instead of "devices".
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
By inserting the DeviceManager on the IO bus, we introduced some cyclic
dependency:
DeviceManager ---> AddressManager ---> Bus ---> BusDevice
^ |
| |
+---------------------------------------------+
This cycle needs to be broken by inserting a Weak reference instead of
an Arc (considered as a strong reference).
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Ensures the configuration is updated after a new device has been
hotplugged. In the event of a reboot, this means the new VM will be
started with the new device that had been previously hotplugged.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit finalizes the VFIO PCI hotplug support, based on all the
previous commits preparing for it.
One thing to notice, this does not support vIOMMU yet. This means we can
hotplug VFIO PCI devices, but we cannot attach them to an existing or a
new virtio-iommu device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This factorization is very important as it will allow both the standard
codepath and the VFIO PCI hotplug codepath to rely on the same function
to perform the addition of a new VFIO PCI device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Whenever the user wants to hotplug a new VFIO PCI device, the VMM will
have to trigger a hotplug notification through the GED device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit introduces the new command "add-device" that will let a user
hotplug a VFIO PCI device to an already running VM.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Through the BusDevice implementation from the DeviceManager, and by
inserting the DeviceManager on the IO bus for a specific IO port range,
the VMM now has the ability to handle PCI device hotplug.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In anticipation of inserting the DeviceManager on the IO/MMIO buses,
the DeviceManager must implement the BusDevice trait.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Create a small method that will perform both hotplug of all the devices
identified by PCIU bitmap, and then perform the hotunplug of all the
devices identified by the PCID bitmap.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The _EJ0 method provides the guest OS a way to notify the VMM that the
device has been properly ejected from the guest OS. Only after this
point, the VMM can fully remove the device.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This new PHPR device in the DSDT table introduces some specific
operation regions and the associated fields.
PCIU stands for "PCI up", which identifies PCI devices that must be
added.
PCID stands for "PCI down", which identifies PCI devices that must be
removed.
B0EJ stands for "Bus 0 eject", which identifies which device on the bus
has been ejected by the guest OS.
Thanks to these fields, the VMM and the guest OS can communicate while
performing hotplug/hotunplug operations.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Adds the DVNT method to the PCI0 device in the DSDT table. This new
method is responsible for checking each slot and notify the guest OS if
one of the slots is supposed to be added or removed.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This commit introduces the ACPI support for describing the 32 device
slots attached to the main PCI host bridge.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In anticipation of the support for device hotplug, this commit moves the
DeviceManager object into an Arc<Mutex<>> when the DeviceManager is
being created. The reason is, we need the DeviceManager to implement the
BusDevice trait and then provide it to the IO bus, so that IO accesses
related to device hotplug can be handled correctly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
We want to prevent from losing interrupts while they are masked. The
way they can be lost is due to the internals of how they are connected
through KVM. An eventfd is registered to a specific GSI, and then a
route is associated with this same GSI.
The current code adds/removes a route whenever a mask/unmask action
happens. Problem with this approach, KVM will consume the eventfd but
it won't be able to find an associated route and eventually it won't
be able to deliver the interrupt.
That's why this patch introduces a different way of masking/unmasking
the interrupts, simply by registering/unregistering the eventfd with the
GSI. This way, when the vector is masked, the eventfd is going to be
written but nothing will happen because KVM won't consume the event.
Whenever the unmask happens, the eventfd will be registered with a
specific GSI, and if there's some pending events, KVM will trigger them,
based on the route associated with the GSI.
Suggested-by: Liu Jiang <gerry@linux.alibaba.com>
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Recently, vhost_user_block gained the ability of actively polling the
queue, a feature that can be disabled with the poll_queue property.
This change adds this property to DiskConfig, so it can be used
through the "disk" argument.
For the moment, it can only be used when vhost_user=true, but this
will change once virtio-block gets the poll_queue feature too.
Fixes: #787
Signed-off-by: Sergio Lopez <slp@redhat.com>
Fix "readonly" and "wce" defaults in cloud-hypervisor.yaml to match
their respective defaults in config.rs:DiskConfig.
Signed-off-by: Sergio Lopez <slp@redhat.com>
It's missing a few knobs (readonly, vhost, wce) that should be exposed
through the rest API.
Fixes: #790
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The kernel does not adhere to the ACPI specification (probably to work
around broken hardware) and rather than busy looping after requesting an
ACPI reset it will attempt to reset by other mechanisms (such as i8042
reset.)
In order to trigger a reset the devices write to an EventFd (called
reset_evt.) This is used by the VMM to identify if a reset is requested
and make the VM reboot. As the reset_evt is part of the VMM and reused
for both the old and new VM it is possible for the newly booted VM to
immediately get reset as there is an old event sitting in the EventFd.
The simplest solution is to "drain" the reset_evt EventFd on reboot to
make sure that there is no spurious events in the EventFd.
Fixes: #783
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Relying on the latest vm-memory version, including the freshly
introduced structure GuestMemoryAtomic, this patch replaces every
occurrence of Arc<ArcSwap<GuestMemoryMmap> with
GuestMemoryAtomic<GuestMemoryMmap>.
The point is to rely on the common RCU-like implementation from
vm-memory so that we don't have to do it from Cloud-Hypervisor.
Fixes#735
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>