libvirt/src/internal.h

521 lines
15 KiB
C
Raw Normal View History

/*
* internal.h: internal definitions just used by code from the library
maint: use LGPL correctly Several files called out COPYING or COPYING.LIB instead of using the normal boilerplate. It's especially important that we don't call out COPYING from an LGPL file, since COPYING is traditionally used for the GPL. A few files were lacking copyright altogether. * src/rpc/gendispatch.pl: Add missing copyright. * Makefile.nonreentrant: Likewise. * src/check-symfile.pl: Likewise. * src/check-symsorting.pl: Likewise. * src/driver.h: Likewise. * src/internal.h: Likewise. * tools/libvirt-guests.sh.in: Likewise. * tools/virt-pki-validate.in: Mention copyright in comment, not just code. * tools/virt-sanlock-cleanup.in: Likewise. * src/rpc/genprotocol.pl: Spell out license terms. * src/xen/xend_internal.h: Likewise. * src/xen/xend_internal.c: Likewise. * Makefile.am: Likewise. * daemon/Makefile.am: Likewise. * docs/Makefile.am: Likewise. * docs/schemas/Makefile.am: Likewise. * examples/apparmor/Makefile.am: Likewise. * examples/domain-events/events-c/Makefile.am: Likewise. * examples/dominfo/Makefile.am: Likewise. * examples/domsuspend/Makefile.am: Likewise. * examples/hellolibvirt/Makefile.am: Likewise. * examples/openauth/Makefile.am: Likewise. * examples/python/Makefile.am: Likewise. * examples/systemtap/Makefile.am: Likewise. * examples/xml/nwfilter/Makefile.am: Likewise. * gnulib/lib/Makefile.am: Likewise. * gnulib/tests/Makefile.am: Likewise. * include/Makefile.am: Likewise. * include/libvirt/Makefile.am: Likewise. * python/Makefile.am: Likewise. * python/tests/Makefile.am: Likewise. * src/Makefile.am: Likewise. * tests/Makefile.am: Likewise. * tools/Makefile.am: Likewise. * configure.ac: Likewise. Signed-off-by: Eric Blake <eblake@redhat.com>
2013-05-14 23:42:12 +00:00
*
2013-12-20 14:02:49 +00:00
* Copyright (C) 2006-2014 Red Hat, Inc.
maint: use LGPL correctly Several files called out COPYING or COPYING.LIB instead of using the normal boilerplate. It's especially important that we don't call out COPYING from an LGPL file, since COPYING is traditionally used for the GPL. A few files were lacking copyright altogether. * src/rpc/gendispatch.pl: Add missing copyright. * Makefile.nonreentrant: Likewise. * src/check-symfile.pl: Likewise. * src/check-symsorting.pl: Likewise. * src/driver.h: Likewise. * src/internal.h: Likewise. * tools/libvirt-guests.sh.in: Likewise. * tools/virt-pki-validate.in: Mention copyright in comment, not just code. * tools/virt-sanlock-cleanup.in: Likewise. * src/rpc/genprotocol.pl: Spell out license terms. * src/xen/xend_internal.h: Likewise. * src/xen/xend_internal.c: Likewise. * Makefile.am: Likewise. * daemon/Makefile.am: Likewise. * docs/Makefile.am: Likewise. * docs/schemas/Makefile.am: Likewise. * examples/apparmor/Makefile.am: Likewise. * examples/domain-events/events-c/Makefile.am: Likewise. * examples/dominfo/Makefile.am: Likewise. * examples/domsuspend/Makefile.am: Likewise. * examples/hellolibvirt/Makefile.am: Likewise. * examples/openauth/Makefile.am: Likewise. * examples/python/Makefile.am: Likewise. * examples/systemtap/Makefile.am: Likewise. * examples/xml/nwfilter/Makefile.am: Likewise. * gnulib/lib/Makefile.am: Likewise. * gnulib/tests/Makefile.am: Likewise. * include/Makefile.am: Likewise. * include/libvirt/Makefile.am: Likewise. * python/Makefile.am: Likewise. * python/tests/Makefile.am: Likewise. * src/Makefile.am: Likewise. * tests/Makefile.am: Likewise. * tools/Makefile.am: Likewise. * configure.ac: Likewise. Signed-off-by: Eric Blake <eblake@redhat.com>
2013-05-14 23:42:12 +00:00
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <errno.h>
#include <limits.h>
#include <verify.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#if STATIC_ANALYSIS
# undef NDEBUG /* Don't let a prior NDEBUG definition cause trouble. */
# include <assert.h>
# define sa_assert(expr) assert (expr)
#else
# define sa_assert(expr) /* empty */
#endif
/* The library itself is allowed to use deprecated functions /
* variables, so effectively undefine the deprecated attribute
* which would otherwise be defined in libvirt.h.
*/
#undef VIR_DEPRECATED
#define VIR_DEPRECATED /*empty*/
/* The library itself needs to know enum sizes. */
#define VIR_ENUM_SENTINELS
#ifdef HAVE_LIBINTL_H
# define DEFAULT_TEXT_DOMAIN PACKAGE
# include <libintl.h>
# define _(str) dgettext(PACKAGE, str)
#else /* HAVE_LIBINTL_H */
# define _(str) str
#endif /* HAVE_LIBINTL_H */
#define N_(str) str
#include "libvirt/libvirt.h"
#include "libvirt/libvirt-lxc.h"
#include "libvirt/libvirt-qemu.h"
#include "libvirt/libvirt-admin.h"
#include "libvirt/virterror.h"
#include "c-strcase.h"
#include "ignore-value.h"
#include "count-leading-zeros.h"
/* String equality tests, suggested by Jim Meyering. */
#define STREQ(a, b) (strcmp(a, b) == 0)
#define STRCASEEQ(a, b) (c_strcasecmp(a, b) == 0)
#define STRNEQ(a, b) (strcmp(a, b) != 0)
#define STRCASENEQ(a, b) (c_strcasecmp(a, b) != 0)
#define STREQLEN(a, b, n) (strncmp(a, b, n) == 0)
#define STRCASEEQLEN(a, b, n) (c_strncasecmp(a, b, n) == 0)
#define STRNEQLEN(a, b, n) (strncmp(a, b, n) != 0)
#define STRCASENEQLEN(a, b, n) (c_strncasecmp(a, b, n) != 0)
#define STRPREFIX(a, b) (strncmp(a, b, strlen(b)) == 0)
#define STRCASEPREFIX(a, b) (c_strncasecmp(a, b, strlen(b)) == 0)
#define STRSKIP(a, b) (STRPREFIX(a, b) ? (a) + strlen(b) : NULL)
#define STREQ_NULLABLE(a, b) \
((a) ? (b) && STREQ((a), (b)) : !(b))
#define STRNEQ_NULLABLE(a, b) \
((a) ? !(b) || STRNEQ((a), (b)) : !!(b))
#define NUL_TERMINATE(buf) do { (buf)[sizeof(buf)-1] = '\0'; } while (0)
#define ARRAY_CARDINALITY(Array) (sizeof(Array) / sizeof(*(Array)))
/**
* ATTRIBUTE_UNUSED:
*
2012-10-11 16:31:20 +00:00
* Macro to flag consciously unused parameters to functions
*/
#ifndef ATTRIBUTE_UNUSED
# define ATTRIBUTE_UNUSED __attribute__((__unused__))
#endif
/**
* ATTRIBUTE_NORETURN:
*
* Macro to indicate that a function won't return to the caller
*/
#ifndef ATTRIBUTE_NORETURN
# define ATTRIBUTE_NORETURN __attribute__((__noreturn__))
#endif
/**
* ATTRIBUTE_SENTINEL:
*
* Macro to check for NULL-terminated varargs lists
*/
#ifndef ATTRIBUTE_SENTINEL
# define ATTRIBUTE_SENTINEL __attribute__((__sentinel__))
#endif
/**
* ATTRIBUTE_NOINLINE:
*
* Force compiler not to inline a method. Should be used if
* the method need to be overridable by test mocks.
*/
#ifndef ATTRIBUTE_NOINLINE
# define ATTRIBUTE_NOINLINE __attribute__((__noinline__))
#endif
/**
* ATTRIBUTE_FMT_PRINTF
*
* Macro used to check printf like functions, if compiling
* with gcc.
*
* We use gnulib which guarantees we always have GNU style
* printf format specifiers even on broken Win32 platforms
* hence we have to force 'gnu_printf' for new GCC
*/
#ifndef ATTRIBUTE_FMT_PRINTF
# ifndef __clang__
# define ATTRIBUTE_FMT_PRINTF(fmtpos, argpos) \
__attribute__((__format__ (__gnu_printf__, fmtpos, argpos)))
# else
# define ATTRIBUTE_FMT_PRINTF(fmtpos, argpos) \
__attribute__((__format__ (__printf__, fmtpos, argpos)))
# endif
#endif
#ifndef ATTRIBUTE_RETURN_CHECK
# define ATTRIBUTE_RETURN_CHECK __attribute__((__warn_unused_result__))
#endif
nwfilter: Support for learning a VM's IP address This patch implements support for learning a VM's IP address. It uses the pcap library to listen on the VM's backend network interface (tap) or the physical ethernet device (macvtap) and tries to capture packets with source or destination MAC address of the VM and learn from DHCP Offers, ARP traffic, or first-sent IPv4 packet what the IP address of the VM's interface is. This then allows to instantiate the network traffic filtering rules without the user having to provide the IP parameter somewhere in the filter description or in the interface description as a parameter. This only supports to detect the parameter IP, which is for the assumed single IPv4 address of a VM. There is not support for interfaces that may have multiple IP addresses (IP aliasing) or IPv6 that may then require more than one valid IP address to be detected. A VM can have multiple independent interfaces that each uses a different IP address and in that case it will be attempted to detect each one of the address independently. So, when for example an interface description in the domain XML has looked like this up to now: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'> <parameter name='IP' value='10.2.3.4'/> </filterref> </interface> you may omit the IP parameter: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'/> </interface> Internally I am walking the 'tree' of a VM's referenced network filters and determine with the given variables which variables are missing. Now, the above IP parameter may be missing and this causes a libvirt-internal thread to be started that uses the pcap library's API to listen to the backend interface (in case of macvtap to the physical interface) in an attempt to determine the missing IP parameter. If the backend interface disappears the thread terminates assuming the VM was brought down. In case of a macvtap device a timeout is being used to wait for packets from the given VM (filtering by VM's interface MAC address). If the VM's macvtap device disappeared the thread also terminates. In all other cases it tries to determine the IP address of the VM and will then apply the rules late on the given interface, which would have happened immediately if the IP parameter had been explicitly given. In case an error happens while the firewall rules are applied, the VM's backend interface is 'down'ed preventing it to communicate. Reasons for failure for applying the network firewall rules may that an ebtables/iptables command failes or OOM errors. Essentially the same failure reasons may occur as when the firewall rules are applied immediately on VM start, except that due to the late application of the filtering rules the VM now is already running and cannot be hindered anymore from starting. Bringing down the whole VM would probably be considered too drastic. While a VM's IP address is attempted to be determined only limited updates to network filters are allowed. In particular it is prevented that filters are modified in such a way that they would introduce new variables. A caveat: The algorithm does not know which one is the appropriate IP address of a VM. If the VM spoofs an IP address in its first ARP traffic or IPv4 packets its filtering rules will be instantiated for this IP address, thus 'locking' it to the found IP address. So, it's still 'safer' to explicitly provide the IP address of a VM's interface in the filter description if it is known beforehand. * configure.ac: detect libpcap * libvirt.spec.in: require libpcap[-devel] if qemu is built * src/internal.h: add the new ATTRIBUTE_PACKED define * src/Makefile.am src/libvirt_private.syms: add the new modules and symbols * src/nwfilter/nwfilter_learnipaddr.[ch]: new module being added * src/nwfilter/nwfilter_driver.c src/conf/nwfilter_conf.[ch] src/nwfilter/nwfilter_ebiptables_driver.[ch] src/nwfilter/nwfilter_gentech_driver.[ch]: plu the new functionality in * tests/nwfilterxml2xmltest: extend testing
2010-04-07 21:02:18 +00:00
/**
* ATTRIBUTE_PACKED
*
* force a structure to be packed, i.e. not following architecture and
* compiler best alignments for its sub components. It's needed for example
* for the network filetering code when defining the content of raw
* ethernet packets.
* Others compiler than gcc may use something different e.g. #pragma pack(1)
*/
#ifndef ATTRIBUTE_PACKED
# define ATTRIBUTE_PACKED __attribute__((packed))
#endif
nwfilter: Support for learning a VM's IP address This patch implements support for learning a VM's IP address. It uses the pcap library to listen on the VM's backend network interface (tap) or the physical ethernet device (macvtap) and tries to capture packets with source or destination MAC address of the VM and learn from DHCP Offers, ARP traffic, or first-sent IPv4 packet what the IP address of the VM's interface is. This then allows to instantiate the network traffic filtering rules without the user having to provide the IP parameter somewhere in the filter description or in the interface description as a parameter. This only supports to detect the parameter IP, which is for the assumed single IPv4 address of a VM. There is not support for interfaces that may have multiple IP addresses (IP aliasing) or IPv6 that may then require more than one valid IP address to be detected. A VM can have multiple independent interfaces that each uses a different IP address and in that case it will be attempted to detect each one of the address independently. So, when for example an interface description in the domain XML has looked like this up to now: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'> <parameter name='IP' value='10.2.3.4'/> </filterref> </interface> you may omit the IP parameter: <interface type='bridge'> <source bridge='mybridge'/> <model type='virtio'/> <filterref filter='clean-traffic'/> </interface> Internally I am walking the 'tree' of a VM's referenced network filters and determine with the given variables which variables are missing. Now, the above IP parameter may be missing and this causes a libvirt-internal thread to be started that uses the pcap library's API to listen to the backend interface (in case of macvtap to the physical interface) in an attempt to determine the missing IP parameter. If the backend interface disappears the thread terminates assuming the VM was brought down. In case of a macvtap device a timeout is being used to wait for packets from the given VM (filtering by VM's interface MAC address). If the VM's macvtap device disappeared the thread also terminates. In all other cases it tries to determine the IP address of the VM and will then apply the rules late on the given interface, which would have happened immediately if the IP parameter had been explicitly given. In case an error happens while the firewall rules are applied, the VM's backend interface is 'down'ed preventing it to communicate. Reasons for failure for applying the network firewall rules may that an ebtables/iptables command failes or OOM errors. Essentially the same failure reasons may occur as when the firewall rules are applied immediately on VM start, except that due to the late application of the filtering rules the VM now is already running and cannot be hindered anymore from starting. Bringing down the whole VM would probably be considered too drastic. While a VM's IP address is attempted to be determined only limited updates to network filters are allowed. In particular it is prevented that filters are modified in such a way that they would introduce new variables. A caveat: The algorithm does not know which one is the appropriate IP address of a VM. If the VM spoofs an IP address in its first ARP traffic or IPv4 packets its filtering rules will be instantiated for this IP address, thus 'locking' it to the found IP address. So, it's still 'safer' to explicitly provide the IP address of a VM's interface in the filter description if it is known beforehand. * configure.ac: detect libpcap * libvirt.spec.in: require libpcap[-devel] if qemu is built * src/internal.h: add the new ATTRIBUTE_PACKED define * src/Makefile.am src/libvirt_private.syms: add the new modules and symbols * src/nwfilter/nwfilter_learnipaddr.[ch]: new module being added * src/nwfilter/nwfilter_driver.c src/conf/nwfilter_conf.[ch] src/nwfilter/nwfilter_ebiptables_driver.[ch] src/nwfilter/nwfilter_gentech_driver.[ch]: plu the new functionality in * tests/nwfilterxml2xmltest: extend testing
2010-04-07 21:02:18 +00:00
/* gcc's handling of attribute nonnull is less than stellar - it does
* NOT improve diagnostics, and merely allows gcc to optimize away
* null code checks even when the caller manages to pass null in spite
* of the attribute, leading to weird crashes. Coverity, on the other
* hand, knows how to do better static analysis based on knowing
* whether a parameter is nonnull. Make this attribute conditional
* based on whether we are compiling for real or for analysis, while
* still requiring correct gcc syntax when it is turned off. See also
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17308 */
#ifndef ATTRIBUTE_NONNULL
# if STATIC_ANALYSIS
# define ATTRIBUTE_NONNULL(m) __attribute__((__nonnull__(m)))
# else
# define ATTRIBUTE_NONNULL(m) __attribute__(())
# endif
#endif
#ifndef ATTRIBUTE_FALLTHROUGH
# if __GNUC_PREREQ (7, 0)
# define ATTRIBUTE_FALLTHROUGH __attribute__((fallthrough))
# else
# define ATTRIBUTE_FALLTHROUGH do {} while(0)
# endif
#endif
Disable cast-align warnings in various places There are a number of places which generate cast alignment warnings, which are difficult or impossible to address. Use pragmas to disable the warnings in these few places conf/nwfilter_conf.c: In function 'virNWFilterRuleDetailsParse': conf/nwfilter_conf.c:1806:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)nwf + att[idx].dataIdx); conf/nwfilter_conf.c: In function 'virNWFilterRuleDefDetailsFormat': conf/nwfilter_conf.c:3238:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)def + att[i].dataIdx); storage/storage_backend_mpath.c: In function 'virStorageBackendCreateVols': storage/storage_backend_mpath.c:247:17: warning: cast increases required alignment of target type [-Wcast-align] names = (struct dm_names *)(((char *)names) + next); nwfilter/nwfilter_dhcpsnoop.c: In function 'virNWFilterSnoopDHCPDecode': nwfilter/nwfilter_dhcpsnoop.c:994:15: warning: cast increases required alignment of target type [-Wcast-align] pip = (struct iphdr *) pep->eh_data; nwfilter/nwfilter_dhcpsnoop.c:1004:11: warning: cast increases required alignment of target type [-Wcast-align] pup = (struct udphdr *) ((char *) pip + (pip->ihl << 2)); nwfilter/nwfilter_learnipaddr.c: In function 'procDHCPOpts': nwfilter/nwfilter_learnipaddr.c:327:33: warning: cast increases required alignment of target type [-Wcast-align] uint32_t *tmp = (uint32_t *)&dhcpopt->value; nwfilter/nwfilter_learnipaddr.c: In function 'learnIPAddressThread': nwfilter/nwfilter_learnipaddr.c:501:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:538:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:544:48: warning: cast increases required alignment of target type [-Wcast-align] struct udphdr *udphdr= (struct udphdr *) Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2013-04-03 14:52:40 +00:00
#define VIR_WARNINGS_NO_CAST_ALIGN \
Disable cast-align warnings in various places There are a number of places which generate cast alignment warnings, which are difficult or impossible to address. Use pragmas to disable the warnings in these few places conf/nwfilter_conf.c: In function 'virNWFilterRuleDetailsParse': conf/nwfilter_conf.c:1806:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)nwf + att[idx].dataIdx); conf/nwfilter_conf.c: In function 'virNWFilterRuleDefDetailsFormat': conf/nwfilter_conf.c:3238:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)def + att[i].dataIdx); storage/storage_backend_mpath.c: In function 'virStorageBackendCreateVols': storage/storage_backend_mpath.c:247:17: warning: cast increases required alignment of target type [-Wcast-align] names = (struct dm_names *)(((char *)names) + next); nwfilter/nwfilter_dhcpsnoop.c: In function 'virNWFilterSnoopDHCPDecode': nwfilter/nwfilter_dhcpsnoop.c:994:15: warning: cast increases required alignment of target type [-Wcast-align] pip = (struct iphdr *) pep->eh_data; nwfilter/nwfilter_dhcpsnoop.c:1004:11: warning: cast increases required alignment of target type [-Wcast-align] pup = (struct udphdr *) ((char *) pip + (pip->ihl << 2)); nwfilter/nwfilter_learnipaddr.c: In function 'procDHCPOpts': nwfilter/nwfilter_learnipaddr.c:327:33: warning: cast increases required alignment of target type [-Wcast-align] uint32_t *tmp = (uint32_t *)&dhcpopt->value; nwfilter/nwfilter_learnipaddr.c: In function 'learnIPAddressThread': nwfilter/nwfilter_learnipaddr.c:501:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:538:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:544:48: warning: cast increases required alignment of target type [-Wcast-align] struct udphdr *udphdr= (struct udphdr *) Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2013-04-03 14:52:40 +00:00
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wcast-align\"")
#define VIR_WARNINGS_NO_DEPRECATED \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#if HAVE_SUGGEST_ATTRIBUTE_FORMAT
# define VIR_WARNINGS_NO_PRINTF \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wsuggest-attribute=format\"")
#else
# define VIR_WARNINGS_NO_PRINTF \
_Pragma ("GCC diagnostic push")
#endif
Disable cast-align warnings in various places There are a number of places which generate cast alignment warnings, which are difficult or impossible to address. Use pragmas to disable the warnings in these few places conf/nwfilter_conf.c: In function 'virNWFilterRuleDetailsParse': conf/nwfilter_conf.c:1806:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)nwf + att[idx].dataIdx); conf/nwfilter_conf.c: In function 'virNWFilterRuleDefDetailsFormat': conf/nwfilter_conf.c:3238:16: warning: cast increases required alignment of target type [-Wcast-align] item = (nwItemDesc *)((char *)def + att[i].dataIdx); storage/storage_backend_mpath.c: In function 'virStorageBackendCreateVols': storage/storage_backend_mpath.c:247:17: warning: cast increases required alignment of target type [-Wcast-align] names = (struct dm_names *)(((char *)names) + next); nwfilter/nwfilter_dhcpsnoop.c: In function 'virNWFilterSnoopDHCPDecode': nwfilter/nwfilter_dhcpsnoop.c:994:15: warning: cast increases required alignment of target type [-Wcast-align] pip = (struct iphdr *) pep->eh_data; nwfilter/nwfilter_dhcpsnoop.c:1004:11: warning: cast increases required alignment of target type [-Wcast-align] pup = (struct udphdr *) ((char *) pip + (pip->ihl << 2)); nwfilter/nwfilter_learnipaddr.c: In function 'procDHCPOpts': nwfilter/nwfilter_learnipaddr.c:327:33: warning: cast increases required alignment of target type [-Wcast-align] uint32_t *tmp = (uint32_t *)&dhcpopt->value; nwfilter/nwfilter_learnipaddr.c: In function 'learnIPAddressThread': nwfilter/nwfilter_learnipaddr.c:501:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:538:43: warning: cast increases required alignment of target type [-Wcast-align] struct iphdr *iphdr = (struct iphdr*)(packet + nwfilter/nwfilter_learnipaddr.c:544:48: warning: cast increases required alignment of target type [-Wcast-align] struct udphdr *udphdr= (struct udphdr *) Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
2013-04-03 14:52:40 +00:00
/* Workaround bogus GCC 6.0 for logical 'or' equal expression warnings.
* (GCC bz 69602) */
#if BROKEN_GCC_WLOGICALOP_EQUAL_EXPR
# define VIR_WARNINGS_NO_WLOGICALOP_EQUAL_EXPR \
_Pragma ("GCC diagnostic push") \
_Pragma ("GCC diagnostic ignored \"-Wlogical-op\"")
#else
# define VIR_WARNINGS_NO_WLOGICALOP_EQUAL_EXPR \
_Pragma ("GCC diagnostic push")
#endif
#define VIR_WARNINGS_RESET \
_Pragma ("GCC diagnostic pop")
/*
* Use this when passing possibly-NULL strings to printf-a-likes.
*/
#define NULLSTR(s) ((s) ? (s) : "<null>")
/*
* Turn a NULL string into an empty string
*/
#define NULLSTR_EMPTY(s) ((s) ? (s) : "")
/*
* Turn a NULL string into a star
*/
#define NULLSTR_STAR(s) ((s) ? (s) : "*")
/*
* Turn a NULL string into a minus sign
*/
#define NULLSTR_MINUS(s) ((s) ? (s) : "-")
/**
* SWAP:
*
* In place exchange of two values
*/
#define SWAP(a, b) \
do { \
(a) = (a) ^ (b); \
(b) = (a) ^ (b); \
(a) = (a) ^ (b); \
} while (0)
/**
* VIR_STEAL_PTR:
*
* Steals pointer passed as second argument into the first argument. Second
* argument must not have side effects.
*/
#define VIR_STEAL_PTR(a, b) \
do { \
(a) = (b); \
(b) = NULL; \
} while (0)
/**
* VIR_RETURN_PTR:
* @ret: pointer to return
*
* Returns value of @ret while clearing @ret. This ensures that pointers
* freed by using VIR_AUTOPTR can be easily passed back to the caller without
* any temporary variable. @ptr is evaluated more than once.
*/
#define VIR_RETURN_PTR(ptr) \
do { \
typeof(ptr) virTemporaryReturnPointer = (ptr); \
(ptr) = NULL; \
return virTemporaryReturnPointer; \
} while (0)
/**
* virCheckFlags:
* @supported: an OR'ed set of supported flags
* @retval: return value in case unsupported flags were passed
*
* To avoid memory leaks this macro has to be used before any non-trivial
* code which could possibly allocate some memory.
*
* Returns nothing. Exits the caller function if unsupported flags were
* passed to it.
*/
#define virCheckFlags(supported, retval) \
do { \
unsigned long __unsuppflags = flags & ~(supported); \
if (__unsuppflags) { \
virReportInvalidArg(flags, \
_("unsupported flags (0x%lx) in function %s"), \
__unsuppflags, __FUNCTION__); \
return retval; \
} \
} while (0)
/**
* virCheckFlagsGoto:
* @supported: an OR'ed set of supported flags
* @label: label to jump to on error
*
* To avoid memory leaks this macro has to be used before any non-trivial
* code which could possibly allocate some memory.
*
* Returns nothing. Jumps to a label if unsupported flags were
* passed to it.
*/
#define virCheckFlagsGoto(supported, label) \
do { \
unsigned long __unsuppflags = flags & ~(supported); \
if (__unsuppflags) { \
virReportInvalidArg(flags, \
_("unsupported flags (0x%lx) in function %s"), \
__unsuppflags, __FUNCTION__); \
goto label; \
} \
} while (0)
/* Macros to help dealing with mutually exclusive flags. */
/**
* VIR_EXCLUSIVE_FLAGS_RET:
*
* @FLAG1: First flag to be checked.
* @FLAG2: Second flag to be checked.
* @RET: Return value.
*
* Reject mutually exclusive API flags. The checked flags are compared
* with flags variable.
*
* This helper does an early return and therefore it has to be called
* before anything that would require cleanup.
*/
#define VIR_EXCLUSIVE_FLAGS_RET(FLAG1, FLAG2, RET) \
do { \
if ((flags & FLAG1) && (flags & FLAG2)) { \
virReportInvalidArg(ctl, \
_("Flags '%s' and '%s' are mutually " \
"exclusive"), \
#FLAG1, #FLAG2); \
return RET; \
} \
} while (0)
/**
* VIR_EXCLUSIVE_FLAGS_GOTO:
*
* @FLAG1: First flag to be checked.
* @FLAG2: Second flag to be checked.
* @LABEL: Label to jump to.
*
* Reject mutually exclusive API flags. The checked flags are compared
* with flags variable.
*
* Returns nothing. Jumps to a label if unsupported flags were
* passed to it.
*/
#define VIR_EXCLUSIVE_FLAGS_GOTO(FLAG1, FLAG2, LABEL) \
do { \
if ((flags & FLAG1) && (flags & FLAG2)) { \
virReportInvalidArg(ctl, \
_("Flags '%s' and '%s' are mutually " \
"exclusive"), \
#FLAG1, #FLAG2); \
goto LABEL; \
} \
} while (0)
/* Macros to help dealing with flag requirements. */
/**
* VIR_REQUIRE_FLAG_RET:
*
* @FLAG1: First flag to be checked.
* @FLAG2: Second flag that is required by first flag.
* @RET: Return value.
*
* Check whether required flag is set. The checked flags are compared
* with flags variable.
*
* This helper does an early return and therefore it has to be called
* before anything that would require cleanup.
*/
#define VIR_REQUIRE_FLAG_RET(FLAG1, FLAG2, RET) \
do { \
if ((flags & FLAG1) && !(flags & FLAG2)) { \
virReportInvalidArg(ctl, \
_("Flag '%s' is required by flag '%s'"), \
#FLAG2, #FLAG1); \
return RET; \
} \
} while (0)
/**
* VIR_REQUIRE_FLAG_GOTO:
*
* @FLAG1: First flag to be checked.
* @FLAG2: Second flag that is required by first flag.
* @LABEL: Label to jump to.
*
* Check whether required flag is set. The checked flags are compared
* with flags variable.
*
* Returns nothing. Jumps to a label if required flag is not set.
*/
#define VIR_REQUIRE_FLAG_GOTO(FLAG1, FLAG2, LABEL) \
do { \
if ((flags & FLAG1) && !(flags & FLAG2)) { \
virReportInvalidArg(ctl, \
_("Flag '%s' is required by flag '%s'"), \
#FLAG2, #FLAG1); \
goto LABEL; \
} \
} while (0)
#define virCheckNonNullArgReturn(argname, retval) \
do { \
if (argname == NULL) { \
virReportInvalidNonNullArg(argname); \
return retval; \
} \
} while (0)
#define virCheckNullArgGoto(argname, label) \
do { \
if (argname != NULL) { \
virReportInvalidNullArg(argname); \
goto label; \
} \
} while (0)
#define virCheckNonNullArgGoto(argname, label) \
do { \
if (argname == NULL) { \
virReportInvalidNonNullArg(argname); \
goto label; \
} \
} while (0)
#define virCheckNonEmptyStringArgGoto(argname, label) \
do { \
if (argname == NULL) { \
virReportInvalidNonNullArg(argname); \
goto label; \
} \
if (*argname == '\0') { \
virReportInvalidEmptyStringArg(argname); \
goto label; \
} \
} while (0)
#define virCheckPositiveArgGoto(argname, label) \
do { \
if (argname <= 0) { \
virReportInvalidPositiveArg(argname); \
goto label; \
} \
} while (0)
#define virCheckPositiveArgReturn(argname, retval) \
do { \
if (argname <= 0) { \
virReportInvalidPositiveArg(argname); \
return retval; \
} \
} while (0)
#define virCheckNonZeroArgGoto(argname, label) \
do { \
if (argname == 0) { \
virReportInvalidNonZeroArg(argname); \
goto label; \
} \
} while (0)
#define virCheckZeroArgGoto(argname, label) \
do { \
if (argname != 0) { \
virReportInvalidNonZeroArg(argname); \
goto label; \
} \
} while (0)
#define virCheckNonNegativeArgGoto(argname, label) \
do { \
if (argname < 0) { \
virReportInvalidNonNegativeArg(argname); \
goto label; \
} \
} while (0)
#define virCheckReadOnlyGoto(flags, label) \
do { \
if ((flags) & VIR_CONNECT_RO) { \
2013-12-20 14:02:49 +00:00
virReportRestrictedError(_("read only access prevents %s"), \
__FUNCTION__); \
goto label; \
} \
2013-12-20 14:02:49 +00:00
} while (0)
/* divide value by size, rounding up */
#define VIR_DIV_UP(value, size) (((value) + (size) - 1) / (size))
/* round up value to the closest multiple of size */
#define VIR_ROUND_UP(value, size) (VIR_DIV_UP(value, size) * (size))
/* Round up to the next closest power of 2. It will return rounded number or 0
* for 0 or number more than 2^31 (for 32bit unsigned int). */
#define VIR_ROUND_UP_POWER_OF_TWO(value) \
((value) > 0 && (value) <= 1U << (sizeof(unsigned int) * 8 - 1) ? \
1U << (sizeof(unsigned int) * 8 - count_leading_zeros((value) - 1)) : 0)
Rewrite all the DTrace/SystemTAP probing The libvirtd daemon had a few crude system tap probes. Some of these were broken during the RPC rewrite. The new modular RPC code is structured in a way that allows much more effective tracing. Instead of trying to hook up the original probes, define a new set of probes for the RPC and event code. The master probes file is now src/probes.d. This contains probes for virNetServerClientPtr, virNetClientPtr, virSocketPtr virNetTLSContextPtr and virNetTLSSessionPtr modules. Also add probes for the poll event loop. The src/dtrace2systemtap.pl script can convert the probes.d file into a libvirt_probes.stp file to make use from systemtap much simpler. The src/rpc/gensystemtap.pl script can generate a set of systemtap functions for translating RPC enum values into printable strings. This works for all RPC header enums (program, type, status, procedure) and also the authentication enum The PROBE macro will automatically generate a VIR_DEBUG statement, so any place with a PROBE can remove any existing manual DEBUG statements. * daemon/libvirtd.stp, daemon/probes.d: Remove obsolete probing * daemon/libvirtd.h: Remove probe macros * daemon/Makefile.am: Remove all probe buildings/install * daemon/remote.c: Update authentication probes * src/dtrace2systemtap.pl, src/rpc/gensystemtap.pl: Scripts to generate STP files * src/internal.h: Add probe macros * src/probes.d: Master list of probes * src/rpc/virnetclient.c, src/rpc/virnetserverclient.c, src/rpc/virnetsocket.c, src/rpc/virnettlscontext.c, src/util/event_poll.c: Insert probe points, removing any DEBUG statements that duplicate the info
2011-09-30 13:40:23 +00:00
/* Specific error values for use in forwarding programs such as
* virt-login-shell; these values match what GNU env does. */
enum {
EXIT_CANCELED = 125, /* Failed before attempting exec */
EXIT_CANNOT_INVOKE = 126, /* Exists but couldn't exec */
EXIT_ENOENT = 127, /* Could not find program to exec */
};
Rewrite all the DTrace/SystemTAP probing The libvirtd daemon had a few crude system tap probes. Some of these were broken during the RPC rewrite. The new modular RPC code is structured in a way that allows much more effective tracing. Instead of trying to hook up the original probes, define a new set of probes for the RPC and event code. The master probes file is now src/probes.d. This contains probes for virNetServerClientPtr, virNetClientPtr, virSocketPtr virNetTLSContextPtr and virNetTLSSessionPtr modules. Also add probes for the poll event loop. The src/dtrace2systemtap.pl script can convert the probes.d file into a libvirt_probes.stp file to make use from systemtap much simpler. The src/rpc/gensystemtap.pl script can generate a set of systemtap functions for translating RPC enum values into printable strings. This works for all RPC header enums (program, type, status, procedure) and also the authentication enum The PROBE macro will automatically generate a VIR_DEBUG statement, so any place with a PROBE can remove any existing manual DEBUG statements. * daemon/libvirtd.stp, daemon/probes.d: Remove obsolete probing * daemon/libvirtd.h: Remove probe macros * daemon/Makefile.am: Remove all probe buildings/install * daemon/remote.c: Update authentication probes * src/dtrace2systemtap.pl, src/rpc/gensystemtap.pl: Scripts to generate STP files * src/internal.h: Add probe macros * src/probes.d: Master list of probes * src/rpc/virnetclient.c, src/rpc/virnetserverclient.c, src/rpc/virnetsocket.c, src/rpc/virnettlscontext.c, src/util/event_poll.c: Insert probe points, removing any DEBUG statements that duplicate the info
2011-09-30 13:40:23 +00:00
#ifndef ENODATA
# define ENODATA EIO
#endif