libvirt/src/hyperv/hyperv_driver.c

2071 lines
61 KiB
C
Raw Normal View History

2011-07-13 16:47:01 +02:00
/*
* hyperv_driver.c: core driver functions for managing Microsoft Hyper-V hosts
*
* Copyright (C) 2011-2013 Matthias Bolte <matthias.bolte@googlemail.com>
2011-07-13 16:47:01 +02:00
* Copyright (C) 2009 Michael Sievers <msievers83@googlemail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
2011-07-13 16:47:01 +02:00
*
*/
#include <config.h>
#include "internal.h"
#include "datatypes.h"
#include "virdomainobjlist.h"
#include "virauth.h"
2012-12-12 18:06:53 +00:00
#include "viralloc.h"
2012-12-12 17:59:27 +00:00
#include "virlog.h"
2012-12-13 18:01:25 +00:00
#include "viruuid.h"
#include "virutil.h"
2011-07-13 16:47:01 +02:00
#include "hyperv_driver.h"
#include "hyperv_private.h"
#include "hyperv_util.h"
#include "hyperv_wmi.h"
#include "virstring.h"
#include "virkeycode.h"
#include "domain_conf.h"
2011-07-13 16:47:01 +02:00
#define VIR_FROM_THIS VIR_FROM_HYPERV
VIR_LOG_INIT("hyperv.hyperv_driver");
2011-07-13 16:47:01 +02:00
/*
* WMI utility functions
*
* wrapper functions for commonly-accessed WMI objects and interfaces.
*/
/**
* hypervGetWmiClass:
* @type: the type of the class being retrieved from WMI
* @class: double pointer where the class data will be stored
*
* Retrieve one or more classes from WMI.
*
* The following variables must exist in the caller:
* 1. hypervPrivate *priv
* 2. virBuffer query
*/
#define hypervGetWmiClass(type, class) \
hypervGetWmiClassList(priv, type ## _WmiInfo, &query, (hypervObject **)class)
static int
hypervGetProcessorsByName(hypervPrivate *priv, const char *name,
Win32_Processor **processorList)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
virBufferEscapeSQL(&query,
"ASSOCIATORS OF {Win32_ComputerSystem.Name='%s'} "
"WHERE AssocClass = Win32_ComputerSystemProcessor "
"ResultClass = Win32_Processor",
name);
if (hypervGetWmiClass(Win32_Processor, processorList) < 0)
return -1;
if (!processorList) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not look up processor(s) on '%s'"),
name);
return -1;
}
return 0;
}
static int
hypervGetActiveVirtualSystemList(hypervPrivate *priv,
Msvm_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = { g_string_new(MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL
"AND " MSVM_COMPUTERSYSTEM_WQL_ACTIVE), 0 };
if (hypervGetWmiClass(Msvm_ComputerSystem, computerSystemList) < 0)
return -1;
if (!*computerSystemList) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not look up active virtual machines"));
return -1;
}
return 0;
}
/* gets all the vms including the ones that are marked inactive. */
static int
hypervGetInactiveVirtualSystemList(hypervPrivate *priv,
Msvm_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = { g_string_new(MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL
"AND " MSVM_COMPUTERSYSTEM_WQL_INACTIVE), 0 };
if (hypervGetWmiClass(Msvm_ComputerSystem, computerSystemList) < 0)
return -1;
if (!*computerSystemList) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not look up inactive virtual machines"));
return -1;
}
return 0;
}
static int
hypervGetPhysicalSystemList(hypervPrivate *priv,
Win32_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = { g_string_new(WIN32_COMPUTERSYSTEM_WQL_SELECT), 0 };
if (hypervGetWmiClass(Win32_ComputerSystem, computerSystemList) < 0)
return -1;
if (!*computerSystemList) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not look up Win32_ComputerSystem"));
return -1;
}
return 0;
}
static int
hypervGetVirtualSystemByID(hypervPrivate *priv, int id,
Msvm_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
virBufferAsprintf(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL
"AND ProcessID = %d",
id);
if (hypervGetWmiClass(Msvm_ComputerSystem, computerSystemList) < 0)
return -1;
if (*computerSystemList == NULL) {
virReportError(VIR_ERR_NO_DOMAIN, _("No domain with ID %d"), id);
return -1;
}
return 0;
}
static int
hypervGetVirtualSystemByUUID(hypervPrivate *priv, const char *uuid,
Msvm_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
virBufferEscapeSQL(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL
"AND Name = '%s'",
uuid);
if (hypervGetWmiClass(Msvm_ComputerSystem, computerSystemList) < 0)
return -1;
if (*computerSystemList == NULL) {
virReportError(VIR_ERR_NO_DOMAIN,
_("No domain with UUID %s"), uuid);
return -1;
}
return 0;
}
static int
hypervGetVirtualSystemByName(hypervPrivate *priv, const char *name,
Msvm_ComputerSystem **computerSystemList)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
virBufferEscapeSQL(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL
"AND ElementName = '%s'",
name);
if (hypervGetWmiClass(Msvm_ComputerSystem, computerSystemList) < 0)
return -1;
if (*computerSystemList == NULL) {
virReportError(VIR_ERR_NO_DOMAIN,
_("No domain with name %s"), name);
return -1;
}
return 0;
}
static int
hypervGetProcSDByVSSDInstanceId(hypervPrivate *priv, const char *id,
Msvm_ProcessorSettingData **data)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
virBufferEscapeSQL(&query,
"ASSOCIATORS OF {Msvm_VirtualSystemSettingData.InstanceID='%s'} "
"WHERE AssocClass = Msvm_VirtualSystemSettingDataComponent "
"ResultClass = Msvm_ProcessorSettingData",
id);
if (hypervGetWmiClass(Msvm_ProcessorSettingData, data) < 0)
return -1;
if (!*data) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not look up processor setting data with virtual system instance ID '%s'"),
id);
return -1;
}
return 0;
}
static int
hypervRequestStateChange(virDomainPtr domain, int state)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (computerSystem->data.common->EnabledState != MSVM_COMPUTERSYSTEM_ENABLEDSTATE_ENABLED) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s", _("Domain is not active"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain, state);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
/*
* API-specific utility functions
*/
static int
hypervParseVersionString(const char *str, unsigned int *major,
unsigned int *minor, unsigned int *micro)
{
char *suffix = NULL;
if (virStrToLong_ui(str, &suffix, 10, major) < 0)
return -1;
if (virStrToLong_ui(suffix + 1, &suffix, 10, minor) < 0)
return -1;
if (virStrToLong_ui(suffix + 1, NULL, 10, micro) < 0)
return -1;
return 0;
}
static int
hypervLookupHostSystemBiosUuid(hypervPrivate *priv, unsigned char *uuid)
{
Win32_ComputerSystemProduct *computerSystem = NULL;
g_auto(virBuffer) query = { g_string_new(WIN32_COMPUTERSYSTEMPRODUCT_WQL_SELECT), 0 };
int result = -1;
if (hypervGetWmiClass(Win32_ComputerSystemProduct, &computerSystem) < 0)
goto cleanup;
if (virUUIDParse(computerSystem->data.common->UUID, uuid) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not parse UUID from string '%s'"),
computerSystem->data.common->UUID);
goto cleanup;
}
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *) computerSystem);
return result;
}
static virCapsPtr
hypervCapsInit(hypervPrivate *priv)
{
virCapsPtr caps = NULL;
virCapsGuestPtr guest = NULL;
caps = virCapabilitiesNew(VIR_ARCH_X86_64, 1, 1);
if (!caps)
return NULL;
if (hypervLookupHostSystemBiosUuid(priv, caps->host.host_uuid) < 0)
goto error;
/* i686 caps */
guest = virCapabilitiesAddGuest(caps, VIR_DOMAIN_OSTYPE_HVM, VIR_ARCH_I686,
NULL, NULL, 0, NULL);
if (!guest)
goto error;
if (!virCapabilitiesAddGuestDomain(guest, VIR_DOMAIN_VIRT_HYPERV, NULL, NULL, 0, NULL))
goto error;
/* x86_64 caps */
guest = virCapabilitiesAddGuest(caps, VIR_DOMAIN_OSTYPE_HVM, VIR_ARCH_X86_64,
NULL, NULL, 0, NULL);
if (!guest)
goto error;
if (!virCapabilitiesAddGuestDomain(guest, VIR_DOMAIN_VIRT_HYPERV, NULL, NULL, 0, NULL))
goto error;
return caps;
error:
virObjectUnref(caps);
return NULL;
}
/*
* Driver functions
*/
static void
hypervFreePrivate(hypervPrivate **priv)
{
if (priv == NULL || *priv == NULL)
return;
if ((*priv)->client != NULL)
wsmc_release((*priv)->client);
if ((*priv)->caps)
virObjectUnref((*priv)->caps);
hypervFreeParsedUri(&(*priv)->parsedUri);
VIR_FREE(*priv);
}
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
static int
hypervInitConnection(virConnectPtr conn, hypervPrivate *priv,
char *username, char *password)
{
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER;
hypervObject *computerSystem = NULL;
int ret = -1;
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
/* Initialize the openwsman connection */
priv->client = wsmc_create(conn->uri->server, conn->uri->port, "/wsman",
priv->parsedUri->transport, username, password);
if (priv->client == NULL) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not create openwsman client"));
goto cleanup;
}
if (wsmc_transport_init(priv->client, NULL) != 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not initialize openwsman transport"));
goto cleanup;
}
/* FIXME: Currently only basic authentication is supported */
wsman_transport_set_auth_method(priv->client, "basic");
wqlQuery.info = Msvm_ComputerSystem_WmiInfo;
wqlQuery.query = &query;
virBufferAddLit(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_PHYSICAL);
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
/* try query using V2 namespace (for Hyper-V 2012+) */
priv->wmiVersion = HYPERV_WMI_VERSION_V2;
if (hypervEnumAndPull(priv, &wqlQuery, &computerSystem) < 0) {
/* rebuild query because hypervEnumAndPull consumes it */
virBufferAddLit(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_PHYSICAL);
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
/* fall back to V1 namespace (for Hyper-V 2008) */
priv->wmiVersion = HYPERV_WMI_VERSION_V1;
if (hypervEnumAndPull(priv, &wqlQuery, &computerSystem) < 0)
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
goto cleanup;
}
ret = 0;
cleanup:
hypervFreeObject(priv, computerSystem);
return ret;
}
2011-07-13 16:47:01 +02:00
static virDrvOpenStatus
hypervConnectOpen(virConnectPtr conn, virConnectAuthPtr auth,
virConfPtr conf G_GNUC_UNUSED,
unsigned int flags)
2011-07-13 16:47:01 +02:00
{
virDrvOpenStatus result = VIR_DRV_OPEN_ERROR;
hypervPrivate *priv = NULL;
char *username = NULL;
char *password = NULL;
2011-07-13 16:47:01 +02:00
virCheckFlags(VIR_CONNECT_RO, VIR_DRV_OPEN_ERROR);
/* Allocate per-connection private data */
priv = g_new0(hypervPrivate, 1);
if (hypervParseUri(&priv->parsedUri, conn->uri) < 0)
goto cleanup;
/* Set the port dependent on the transport protocol if no port is
* specified. This allows us to rely on the port parameter being
* correctly set when building URIs later on, without the need to
* distinguish between the situations port == 0 and port != 0 */
if (conn->uri->port == 0) {
if (STRCASEEQ(priv->parsedUri->transport, "https")) {
conn->uri->port = 5986;
} else {
conn->uri->port = 5985;
}
}
/* Request credentials */
if (conn->uri->user != NULL) {
username = g_strdup(conn->uri->user);
} else {
if (!(username = virAuthGetUsername(conn, auth, "hyperv",
"administrator",
conn->uri->server)))
goto cleanup;
}
if (!(password = virAuthGetPassword(conn, auth, "hyperv", username,
conn->uri->server)))
goto cleanup;
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
if (hypervInitConnection(conn, priv, username, password) < 0)
goto cleanup;
/* set up capabilities */
priv->caps = hypervCapsInit(priv);
if (!priv->caps)
goto cleanup;
conn->privateData = priv;
priv = NULL;
result = VIR_DRV_OPEN_SUCCESS;
cleanup:
hypervFreePrivate(&priv);
VIR_FREE(username);
VIR_FREE(password);
return result;
}
static int
hypervConnectClose(virConnectPtr conn)
{
hypervPrivate *priv = conn->privateData;
hypervFreePrivate(&priv);
conn->privateData = NULL;
return 0;
}
static const char *
hypervConnectGetType(virConnectPtr conn G_GNUC_UNUSED)
{
return "Hyper-V";
}
static int
hypervConnectGetVersion(virConnectPtr conn, unsigned long *version)
{
int result = -1;
hypervPrivate *priv = conn->privateData;
Win32_OperatingSystem *os = NULL;
g_auto(virBuffer) query = { g_string_new(WIN32_OPERATINGSYSTEM_WQL_SELECT), 0 };
unsigned int major, minor, micro;
if (hypervGetWmiClass(Win32_OperatingSystem, &os) < 0)
goto cleanup;
if (!os) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not get version information for host %s"),
conn->uri->server);
goto cleanup;
}
if (hypervParseVersionString(os->data.common->Version,
&major, &minor, &micro) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not parse version from '%s'"),
os->data.common->Version);
goto cleanup;
}
/*
* Pack the version into an unsigned long while retaining all the digits.
*
* Since Microsoft's build numbers are almost always over 1000, this driver
* needs to pack the value differently compared to the format defined by
* virConnectGetVersion().
*
* This results in `virsh version` producing unexpected output.
*
* For example...
* 2008: 6.0.6001 => 600.6.1
* 2008 R2: 6.1.7600 => 601.7.600
* 2012: 6.2.9200 => 602.9.200
* 2012 R2: 6.3.9600 => 603.9.600
* 2016: 10.0.14393 => 1000.14.393
* 2019: 10.0.17763 => 1000.17.763
*/
if (major > 99 || minor > 99 || micro > 999999) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not produce packed version number from '%s'"),
os->data.common->Version);
goto cleanup;
}
*version = major * 100000000 + minor * 1000000 + micro;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *) os);
return result;
}
static char *
hypervConnectGetHostname(virConnectPtr conn)
{
char *hostname = NULL;
hypervPrivate *priv = conn->privateData;
Win32_ComputerSystem *computerSystem = NULL;
if (hypervGetPhysicalSystemList(priv, &computerSystem) < 0)
goto cleanup;
hostname = g_strdup(computerSystem->data.common->DNSHostName);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return hostname;
}
static char*
hypervConnectGetCapabilities(virConnectPtr conn)
{
hypervPrivate *priv = conn->privateData;
return virCapabilitiesFormatXML(priv->caps);
}
static int
hypervConnectGetMaxVcpus(virConnectPtr conn, const char *type G_GNUC_UNUSED)
{
int result = -1;
hypervPrivate *priv = conn->privateData;
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
Msvm_ProcessorSettingData *processorSettingData = NULL;
/* Get max processors definition */
virBufferAddLit(&query,
MSVM_PROCESSORSETTINGDATA_WQL_SELECT
"WHERE InstanceID LIKE 'Microsoft:Definition%Maximum'");
if (hypervGetWmiClass(Msvm_ProcessorSettingData, &processorSettingData) < 0)
goto cleanup;
if (!processorSettingData) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not get maximum definition of Msvm_ProcessorSettingData for host %s"),
conn->uri->server);
goto cleanup;
}
result = processorSettingData->data.common->VirtualQuantity;
cleanup:
hypervFreeObject(priv, (hypervObject *) processorSettingData);
return result;
}
static int
hypervNodeGetInfo(virConnectPtr conn, virNodeInfoPtr info)
{
int result = -1;
hypervPrivate *priv = conn->privateData;
Win32_ComputerSystem *computerSystem = NULL;
Win32_Processor *processorList = NULL;
Win32_Processor *processor = NULL;
char *tmp;
memset(info, 0, sizeof(*info));
if (hypervGetPhysicalSystemList(priv, &computerSystem) < 0)
goto cleanup;
if (hypervGetProcessorsByName(priv, computerSystem->data.common->Name,
&processorList) < 0) {
goto cleanup;
}
/* Strip the string to fit more relevant information in 32 chars */
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
tmp = processorList->data.common->Name;
while (*tmp != '\0') {
if (STRPREFIX(tmp, " ")) {
memmove(tmp, tmp + 1, strlen(tmp + 1) + 1);
continue;
} else if (STRPREFIX(tmp, "(R)") || STRPREFIX(tmp, "(C)")) {
memmove(tmp, tmp + 3, strlen(tmp + 3) + 1);
continue;
} else if (STRPREFIX(tmp, "(TM)")) {
memmove(tmp, tmp + 4, strlen(tmp + 4) + 1);
continue;
} else if (STRPREFIX(tmp, " @ ")) {
/* Remove " @ X.YZGHz" from the end. */
*tmp = '\0';
break;
}
++tmp;
}
/* Fill struct */
if (virStrcpyStatic(info->model, processorList->data.common->Name) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("CPU model %s too long for destination"),
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
processorList->data.common->Name);
goto cleanup;
}
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
info->memory = computerSystem->data.common->TotalPhysicalMemory / 1024; /* byte to kilobyte */
info->mhz = processorList->data.common->MaxClockSpeed;
info->nodes = 1;
info->sockets = 0;
for (processor = processorList; processor != NULL;
processor = processor->next) {
++info->sockets;
}
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
info->cores = processorList->data.common->NumberOfCores;
info->threads = processorList->data.common->NumberOfLogicalProcessors / info->cores;
info->cpus = info->sockets * info->cores;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
hypervFreeObject(priv, (hypervObject *)processorList);
return result;
}
static int
hypervConnectListDomains(virConnectPtr conn, int *ids, int maxids)
{
bool success = false;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystemList = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
int count = 0;
if (maxids == 0)
return 0;
if (hypervGetActiveVirtualSystemList(priv, &computerSystemList) < 0)
goto cleanup;
for (computerSystem = computerSystemList; computerSystem != NULL;
computerSystem = computerSystem->next) {
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
ids[count++] = computerSystem->data.common->ProcessID;
if (count >= maxids)
break;
}
success = true;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystemList);
return success ? count : -1;
}
static int
hypervConnectNumOfDomains(virConnectPtr conn)
{
bool success = false;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystemList = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
int count = 0;
if (hypervGetActiveVirtualSystemList(priv, &computerSystemList) < 0)
goto cleanup;
for (computerSystem = computerSystemList; computerSystem != NULL;
computerSystem = computerSystem->next) {
++count;
}
success = true;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystemList);
return success ? count : -1;
}
static virDomainPtr
hypervDomainLookupByID(virConnectPtr conn, int id)
{
virDomainPtr domain = NULL;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
if (hypervGetVirtualSystemByID(priv, id, &computerSystem) < 0)
goto cleanup;
hypervMsvmComputerSystemToDomain(conn, computerSystem, &domain);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return domain;
}
static virDomainPtr
hypervDomainLookupByUUID(virConnectPtr conn, const unsigned char *uuid)
{
virDomainPtr domain = NULL;
hypervPrivate *priv = conn->privateData;
char uuid_string[VIR_UUID_STRING_BUFLEN];
Msvm_ComputerSystem *computerSystem = NULL;
virUUIDFormat(uuid, uuid_string);
if (hypervGetVirtualSystemByUUID(priv, uuid_string, &computerSystem) < 0)
goto cleanup;
hypervMsvmComputerSystemToDomain(conn, computerSystem, &domain);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return domain;
}
static virDomainPtr
hypervDomainLookupByName(virConnectPtr conn, const char *name)
{
virDomainPtr domain = NULL;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
if (hypervGetVirtualSystemByName(priv, name, &computerSystem) < 0)
goto cleanup;
hypervMsvmComputerSystemToDomain(conn, computerSystem, &domain);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return domain;
}
static int
hypervDomainSuspend(virDomainPtr domain)
{
hypervPrivate *priv = domain->conn->privateData;
int requestedState = -1;
switch (priv->wmiVersion) {
case HYPERV_WMI_VERSION_V1:
requestedState = MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_PAUSED;
break;
case HYPERV_WMI_VERSION_V2:
requestedState = MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_QUIESCE;
break;
}
return hypervRequestStateChange(domain, requestedState);
}
static int
hypervDomainResume(virDomainPtr domain)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
int expectedState = -1;
switch (priv->wmiVersion) {
case HYPERV_WMI_VERSION_V1:
expectedState = MSVM_COMPUTERSYSTEM_ENABLEDSTATE_PAUSED;
break;
case HYPERV_WMI_VERSION_V2:
expectedState = MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_QUIESCE;
break;
}
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
return -1;
if (computerSystem->data.common->EnabledState != expectedState) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain is not paused"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain,
MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_ENABLED);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainShutdownFlags(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
Msvm_ShutdownComponent *shutdown = NULL;
bool in_transition = false;
char uuid[VIR_UUID_STRING_BUFLEN];
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
g_autoptr(hypervInvokeParamsList) params = NULL;
g_autofree char *selector = NULL;
virCheckFlags(0, -1);
virUUIDFormat(domain->uuid, uuid);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (!hypervIsMsvmComputerSystemActive(computerSystem, &in_transition) ||
in_transition) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain is not active or in state transition"));
goto cleanup;
}
virBufferEscapeSQL(&query, MSVM_SHUTDOWNCOMPONENT_WQL_SELECT "WHERE SystemName = '%s'", uuid);
if (hypervGetWmiClass(Msvm_ShutdownComponent, &shutdown) < 0 ||
!shutdown) {
virReportError(VIR_ERR_OPERATION_FAILED,
_("Could not get Msvm_ShutdownComponent for domain with UUID '%s'"),
uuid);
goto cleanup;
}
selector = g_strdup_printf("CreationClassName=\"Msvm_ShutdownComponent\"&DeviceID=\"%s\"&"
"SystemCreationClassName=\"Msvm_ComputerSystem\"&SystemName=\"%s\"",
shutdown->data.common->DeviceID, uuid);
params = hypervCreateInvokeParamsList(priv, "InitiateShutdown", selector,
Msvm_ShutdownComponent_WmiInfo);
if (!params)
goto cleanup;
hypervAddSimpleParam(params, "Force", "False");
/* "Reason" is not translated because the Hyper-V administrator may not
* know the libvirt user's language. They may not know English, either,
* but this makes it consistent, at least. */
hypervAddSimpleParam(params, "Reason", "Planned shutdown via libvirt");
if (hypervInvokeMethod(priv, &params, NULL) < 0)
goto cleanup;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *) computerSystem);
hypervFreeObject(priv, (hypervObject *) shutdown);
return result;
}
static int
hypervDomainShutdown(virDomainPtr domain)
{
return hypervDomainShutdownFlags(domain, 0);
}
static int
hypervDomainReboot(virDomainPtr domain, unsigned int flags)
{
virCheckFlags(0, -1);
return hypervRequestStateChange(domain, MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_REBOOT);
}
static int
hypervDomainReset(virDomainPtr domain, unsigned int flags)
{
virCheckFlags(0, -1);
return hypervRequestStateChange(domain, MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_RESET);
}
static int
hypervDomainDestroyFlags(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
bool in_transition = false;
virCheckFlags(0, -1);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (!hypervIsMsvmComputerSystemActive(computerSystem, &in_transition) ||
in_transition) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain is not active or is in state transition"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain,
MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_DISABLED);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainDestroy(virDomainPtr domain)
{
return hypervDomainDestroyFlags(domain, 0);
}
static char *
hypervDomainGetOSType(virDomainPtr domain G_GNUC_UNUSED)
{
char *osType;
osType = g_strdup("hvm");
return osType;
}
static int
hypervDomainGetInfo(virDomainPtr domain, virDomainInfoPtr info)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
char uuid_string[VIR_UUID_STRING_BUFLEN];
Msvm_ComputerSystem *computerSystem = NULL;
Msvm_VirtualSystemSettingData *virtualSystemSettingData = NULL;
Msvm_ProcessorSettingData *processorSettingData = NULL;
Msvm_MemorySettingData *memorySettingData = NULL;
memset(info, 0, sizeof(*info));
virUUIDFormat(domain->uuid, uuid_string);
/* Get Msvm_ComputerSystem */
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (hypervGetMsvmVirtualSystemSettingDataFromUUID(priv, uuid_string,
&virtualSystemSettingData) < 0)
goto cleanup;
if (hypervGetProcSDByVSSDInstanceId(priv,
virtualSystemSettingData->data.common->InstanceID,
&processorSettingData) < 0) {
goto cleanup;
}
if (hypervGetMsvmMemorySettingDataFromVSSD(priv,
virtualSystemSettingData->data.common->InstanceID,
&memorySettingData) < 0)
goto cleanup;
/* Fill struct */
info->state = hypervMsvmComputerSystemEnabledStateToDomainState(computerSystem);
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
info->maxMem = memorySettingData->data.common->Limit * 1024; /* megabyte to kilobyte */
info->memory = memorySettingData->data.common->VirtualQuantity * 1024; /* megabyte to kilobyte */
info->nrVirtCpu = processorSettingData->data.common->VirtualQuantity;
info->cpuTime = 0;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
hypervFreeObject(priv, (hypervObject *)virtualSystemSettingData);
hypervFreeObject(priv, (hypervObject *)processorSettingData);
hypervFreeObject(priv, (hypervObject *)memorySettingData);
return result;
}
static int
hypervDomainGetState(virDomainPtr domain, int *state, int *reason,
unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
virCheckFlags(0, -1);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
*state = hypervMsvmComputerSystemEnabledStateToDomainState(computerSystem);
if (reason != NULL)
*reason = 0;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static char *
hypervDomainGetXMLDesc(virDomainPtr domain, unsigned int flags)
{
char *xml = NULL;
hypervPrivate *priv = domain->conn->privateData;
virDomainDefPtr def = NULL;
char uuid_string[VIR_UUID_STRING_BUFLEN];
Msvm_ComputerSystem *computerSystem = NULL;
Msvm_VirtualSystemSettingData *virtualSystemSettingData = NULL;
Msvm_ProcessorSettingData *processorSettingData = NULL;
Msvm_MemorySettingData *memorySettingData = NULL;
domain: Fix unknown flags diagnosis in virDomainGetXMLDesc Many drivers had a comment that they did not validate the incoming 'flags' to virDomainGetXMLDesc() because they were relying on virDomainDefFormat() to do it instead. This used to be the case (at least since 461e0f1a and friends in 0.9.4 added unknown flag checking in general), but regressed in commit 0ecd6851 (1.2.12), when all of the drivers were changed to pass 'flags' through the new helper virDomainDefFormatConvertXMLFlags(). Since this helper silently ignores unknown flags, we need to implement flag checking in each driver instead. Annoyingly, this means that any new flag values added will silently be ignored when targeting an older libvirt, rather than our usual practice of loudly diagnosing an unsupported flag. Add comments in domain_conf.[ch] to remind us to be extra vigilant about the impact when adding flags (a new flag to add data is safe if the older server omitting the requested data doesn't break things in the newer client; a new flag to suppress data rather than enhancing the existing VIR_DOMAIN_XML_SECURE may form a data leak or even a security hole). In the qemu driver, there are multiple callers all funnelling to qemuDomainDefFormatBufInternal(); many of them already validated flags (and often only a subset of the full set of possible flags), but for ease of maintenance, we can also check flags at the common helper function. Signed-off-by: Eric Blake <eblake@redhat.com> Reviewed-by: John Ferlan <jferlan@redhat.com>
2019-02-14 14:25:01 -06:00
virCheckFlags(VIR_DOMAIN_XML_COMMON_FLAGS, NULL);
if (!(def = virDomainDefNew()))
goto cleanup;
virUUIDFormat(domain->uuid, uuid_string);
/* Get Msvm_ComputerSystem */
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (hypervGetMsvmVirtualSystemSettingDataFromUUID(priv, uuid_string,
&virtualSystemSettingData) < 0)
goto cleanup;
if (hypervGetProcSDByVSSDInstanceId(priv,
virtualSystemSettingData->data.common->InstanceID,
&processorSettingData) < 0) {
goto cleanup;
}
if (hypervGetMsvmMemorySettingDataFromVSSD(priv,
virtualSystemSettingData->data.common->InstanceID,
&memorySettingData) < 0)
goto cleanup;
/* Fill struct */
def->virtType = VIR_DOMAIN_VIRT_HYPERV;
if (hypervIsMsvmComputerSystemActive(computerSystem, NULL)) {
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
def->id = computerSystem->data.common->ProcessID;
} else {
def->id = -1;
}
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
if (virUUIDParse(computerSystem->data.common->Name, def->uuid) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not parse UUID from string '%s'"),
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
computerSystem->data.common->Name);
return NULL;
}
def->name = g_strdup(computerSystem->data.common->ElementName);
if (priv->wmiVersion == HYPERV_WMI_VERSION_V1) {
def->description = g_strdup(virtualSystemSettingData->data.v1->Notes);
} else if (priv->wmiVersion == HYPERV_WMI_VERSION_V2 &&
virtualSystemSettingData->data.v2->Notes.data != NULL) {
char **notes = (char **)virtualSystemSettingData->data.v2->Notes.data;
g_auto(virBuffer) buf = VIR_BUFFER_INITIALIZER;
size_t i = 0;
/* in practice Notes has 1 element */
for (i = 0; i < virtualSystemSettingData->data.v2->Notes.count; i++) {
/* but if there's more than 1, separate by double new line */
if (virBufferUse(&buf) > 0)
virBufferAddLit(&buf, "\n\n");
virBufferAdd(&buf, *notes, -1);
notes++;
}
def->description = virBufferContentAndReset(&buf);
}
/* mebibytes to kibibytes */
def->mem.max_memory = memorySettingData->data.common->Limit * 1024;
def->mem.cur_balloon = memorySettingData->data.common->VirtualQuantity * 1024;
virDomainDefSetMemoryTotal(def, memorySettingData->data.common->VirtualQuantity * 1024);
if (virDomainDefSetVcpusMax(def,
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
processorSettingData->data.common->VirtualQuantity,
NULL) < 0)
goto cleanup;
if (virDomainDefSetVcpus(def,
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
processorSettingData->data.common->VirtualQuantity) < 0)
goto cleanup;
def->os.type = VIR_DOMAIN_OSTYPE_HVM;
/* FIXME: devices section is totally missing */
/* XXX xmlopts must be non-NULL */
xml = virDomainDefFormat(def, NULL,
virDomainDefFormatConvertXMLFlags(flags));
cleanup:
virDomainDefFree(def);
hypervFreeObject(priv, (hypervObject *)computerSystem);
hypervFreeObject(priv, (hypervObject *)virtualSystemSettingData);
hypervFreeObject(priv, (hypervObject *)processorSettingData);
hypervFreeObject(priv, (hypervObject *)memorySettingData);
return xml;
}
static int
hypervConnectListDefinedDomains(virConnectPtr conn, char **const names, int maxnames)
{
bool success = false;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystemList = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
int count = 0;
size_t i;
if (maxnames == 0)
return 0;
if (hypervGetInactiveVirtualSystemList(priv, &computerSystemList) < 0)
goto cleanup;
for (computerSystem = computerSystemList; computerSystem != NULL;
computerSystem = computerSystem->next) {
names[count] = g_strdup(computerSystem->data.common->ElementName);
++count;
if (count >= maxnames)
break;
}
success = true;
cleanup:
if (!success) {
for (i = 0; i < count; ++i)
VIR_FREE(names[i]);
count = -1;
}
hypervFreeObject(priv, (hypervObject *)computerSystemList);
return count;
2011-07-13 16:47:01 +02:00
}
static int
hypervConnectNumOfDefinedDomains(virConnectPtr conn)
{
bool success = false;
hypervPrivate *priv = conn->privateData;
Msvm_ComputerSystem *computerSystemList = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
int count = 0;
if (hypervGetInactiveVirtualSystemList(priv, &computerSystemList) < 0)
goto cleanup;
for (computerSystem = computerSystemList; computerSystem != NULL;
computerSystem = computerSystem->next) {
++count;
}
success = true;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystemList);
return success ? count : -1;
}
static int
hypervDomainCreateWithFlags(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
virCheckFlags(0, -1);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (hypervIsMsvmComputerSystemActive(computerSystem, NULL)) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain is already active or is in state transition"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain,
MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_ENABLED);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainCreate(virDomainPtr domain)
{
return hypervDomainCreateWithFlags(domain, 0);
}
static int
hypervDomainGetAutostart(virDomainPtr domain, int *autostart)
{
int result = -1;
char uuid_string[VIR_UUID_STRING_BUFLEN];
hypervPrivate *priv = domain->conn->privateData;
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
Msvm_VirtualSystemGlobalSettingData *vsgsd = NULL;
Msvm_VirtualSystemSettingData *vssd = NULL;
virUUIDFormat(domain->uuid, uuid_string);
if (priv->wmiVersion == HYPERV_WMI_VERSION_V1) {
virBufferEscapeSQL(&query,
MSVM_VIRTUALSYSTEMGLOBALSETTINGDATA_WQL_SELECT
"WHERE SystemName = '%s'", uuid_string);
if (hypervGetWmiClass(Msvm_VirtualSystemGlobalSettingData, &vsgsd) < 0)
goto cleanup;
*autostart = vsgsd->data.common->AutomaticStartupAction == 2;
result = 0;
} else {
if (hypervGetMsvmVirtualSystemSettingDataFromUUID(priv, uuid_string, &vssd) < 0)
goto cleanup;
*autostart = vssd->data.v2->AutomaticStartupAction == 4;
result = 0;
}
cleanup:
hypervFreeObject(priv, (hypervObject *) vsgsd);
hypervFreeObject(priv, (hypervObject *) vssd);
return result;
}
static int
hypervDomainSetAutostart(virDomainPtr domain, int autostart)
{
int result = -1;
char uuid_string[VIR_UUID_STRING_BUFLEN];
hypervPrivate *priv = domain->conn->privateData;
Msvm_VirtualSystemSettingData *vssd = NULL;
g_autoptr(hypervInvokeParamsList) params = NULL;
g_auto(virBuffer) eprQuery = VIR_BUFFER_INITIALIZER;
g_autoptr(virHashTable) autostartParam = NULL;
const char *methodName = NULL;
hypervWmiClassInfoListPtr embeddedParamClass = NULL;
const char *enabledValue = NULL, *disabledValue = NULL;
const char *embeddedParamName = NULL;
switch (priv->wmiVersion) {
case HYPERV_WMI_VERSION_V1:
methodName = "ModifyVirtualSystem";
embeddedParamClass = Msvm_VirtualSystemGlobalSettingData_WmiInfo;
enabledValue = "2";
disabledValue = "0";
embeddedParamName = "SystemSettingData";
break;
case HYPERV_WMI_VERSION_V2:
methodName = "ModifySystemSettings";
embeddedParamClass = Msvm_VirtualSystemSettingData_WmiInfo;
enabledValue = "4";
disabledValue = "2";
embeddedParamName = "SystemSettings";
break;
}
virUUIDFormat(domain->uuid, uuid_string);
if (hypervGetMsvmVirtualSystemSettingDataFromUUID(priv, uuid_string, &vssd) < 0)
goto cleanup;
params = hypervCreateInvokeParamsList(priv, methodName,
MSVM_VIRTUALSYSTEMMANAGEMENTSERVICE_SELECTOR,
Msvm_VirtualSystemManagementService_WmiInfo);
if (!params)
goto cleanup;
if (priv->wmiVersion == HYPERV_WMI_VERSION_V1) {
virBufferEscapeSQL(&eprQuery,
MSVM_COMPUTERSYSTEM_WQL_SELECT "WHERE Name = '%s'",
uuid_string);
if (hypervAddEprParam(params, "ComputerSystem", priv, &eprQuery,
Msvm_ComputerSystem_WmiInfo) < 0)
goto cleanup;
}
autostartParam = hypervCreateEmbeddedParam(priv, embeddedParamClass);
if (hypervSetEmbeddedProperty(autostartParam, "AutomaticStartupAction",
autostart ? enabledValue : disabledValue) < 0)
goto cleanup;
if (hypervSetEmbeddedProperty(autostartParam, "InstanceID",
vssd->data.common->InstanceID) < 0)
goto cleanup;
if (hypervAddEmbeddedParam(params, priv, embeddedParamName,
&autostartParam, embeddedParamClass) < 0)
goto cleanup;
if (hypervInvokeMethod(priv, &params, NULL) < 0)
goto cleanup;
result = 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)vssd);
return result;
}
static unsigned long long
hypervNodeGetFreeMemory(virConnectPtr conn)
{
unsigned long long freeMemoryBytes = 0;
hypervPrivate *priv = conn->privateData;
Win32_OperatingSystem *operatingSystem = NULL;
g_auto(virBuffer) query = { g_string_new(WIN32_OPERATINGSYSTEM_WQL_SELECT), 0 };
if (hypervGetWmiClass(Win32_OperatingSystem, &operatingSystem) < 0)
return 0;
if (!operatingSystem) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not get free memory for host %s"),
conn->uri->server);
return 0;
}
freeMemoryBytes = operatingSystem->data.common->FreePhysicalMemory * 1024;
hypervFreeObject(priv, (hypervObject *)operatingSystem);
return freeMemoryBytes;
}
static int
hypervConnectIsEncrypted(virConnectPtr conn)
{
hypervPrivate *priv = conn->privateData;
if (STRCASEEQ(priv->parsedUri->transport, "https")) {
return 1;
} else {
return 0;
}
}
static int
hypervConnectIsSecure(virConnectPtr conn)
{
hypervPrivate *priv = conn->privateData;
if (STRCASEEQ(priv->parsedUri->transport, "https")) {
return 1;
} else {
return 0;
}
}
static int
hypervConnectIsAlive(virConnectPtr conn)
{
hypervPrivate *priv = conn->privateData;
/* XXX we should be able to do something better than this is simple, safe,
* and good enough for now. In worst case, the function will return true
* even though the connection is not alive.
*/
if (priv->client)
return 1;
else
return 0;
}
static int
hypervDomainIsActive(virDomainPtr domain)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
result = hypervIsMsvmComputerSystemActive(computerSystem, NULL) ? 1 : 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainIsPersistent(virDomainPtr domain G_GNUC_UNUSED)
{
/* Hyper-V has no concept of transient domains, so all of them are persistent */
return 1;
}
static int
hypervDomainIsUpdated(virDomainPtr domain G_GNUC_UNUSED)
2011-07-13 16:47:01 +02:00
{
return 0;
}
static int
hypervDomainManagedSave(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
bool in_transition = false;
int requestedState = -1;
virCheckFlags(0, -1);
switch (priv->wmiVersion) {
case HYPERV_WMI_VERSION_V1:
requestedState = MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_SUSPENDED;
break;
case HYPERV_WMI_VERSION_V2:
requestedState = MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_OFFLINE;
break;
}
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
if (!hypervIsMsvmComputerSystemActive(computerSystem, &in_transition) ||
in_transition) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain is not active or is in state transition"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain, requestedState);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainHasManagedSaveImage(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
virCheckFlags(0, -1);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
result = computerSystem->data.common->EnabledState ==
MSVM_COMPUTERSYSTEM_ENABLEDSTATE_SUSPENDED ? 1 : 0;
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainManagedSaveRemove(virDomainPtr domain, unsigned int flags)
{
int result = -1;
hypervPrivate *priv = domain->conn->privateData;
Msvm_ComputerSystem *computerSystem = NULL;
virCheckFlags(0, -1);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
if (computerSystem->data.common->EnabledState !=
MSVM_COMPUTERSYSTEM_ENABLEDSTATE_SUSPENDED) {
virReportError(VIR_ERR_OPERATION_INVALID, "%s",
_("Domain has no managed save image"));
goto cleanup;
}
result = hypervInvokeMsvmComputerSystemRequestStateChange(domain,
MSVM_COMPUTERSYSTEM_REQUESTEDSTATE_DISABLED);
cleanup:
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
#define MATCH(FLAG) (flags & (FLAG))
static int
hypervConnectListAllDomains(virConnectPtr conn,
virDomainPtr **domains,
unsigned int flags)
{
hypervPrivate *priv = conn->privateData;
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
Msvm_ComputerSystem *computerSystemList = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
size_t ndoms;
virDomainPtr domain;
virDomainPtr *doms = NULL;
int count = 0;
int ret = -1;
size_t i;
virCheckFlags(VIR_CONNECT_LIST_DOMAINS_FILTERS_ALL, -1);
/* check for filter combinations that return no results:
* persistent: all hyperv guests are persistent
* snapshot: the driver does not support snapshot management
* autostart: the driver does not support autostarting guests
*/
if ((MATCH(VIR_CONNECT_LIST_DOMAINS_TRANSIENT) &&
!MATCH(VIR_CONNECT_LIST_DOMAINS_PERSISTENT)) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_AUTOSTART) &&
!MATCH(VIR_CONNECT_LIST_DOMAINS_NO_AUTOSTART)) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_HAS_SNAPSHOT) &&
!MATCH(VIR_CONNECT_LIST_DOMAINS_NO_SNAPSHOT))) {
if (domains)
*domains = g_new0(virDomainPtr, 1);
ret = 0;
goto cleanup;
}
virBufferAddLit(&query,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE " MSVM_COMPUTERSYSTEM_WQL_VIRTUAL);
/* construct query with filter depending on flags */
if (!(MATCH(VIR_CONNECT_LIST_DOMAINS_ACTIVE) &&
MATCH(VIR_CONNECT_LIST_DOMAINS_INACTIVE))) {
if (MATCH(VIR_CONNECT_LIST_DOMAINS_ACTIVE)) {
virBufferAddLit(&query, "AND " MSVM_COMPUTERSYSTEM_WQL_ACTIVE);
}
if (MATCH(VIR_CONNECT_LIST_DOMAINS_INACTIVE)) {
virBufferAddLit(&query, "AND " MSVM_COMPUTERSYSTEM_WQL_INACTIVE);
}
}
if (hypervGetWmiClass(Msvm_ComputerSystem, &computerSystemList) < 0)
goto cleanup;
if (domains) {
doms = g_new0(virDomainPtr, 1);
ndoms = 1;
}
for (computerSystem = computerSystemList; computerSystem != NULL;
computerSystem = computerSystem->next) {
/* filter by domain state */
if (MATCH(VIR_CONNECT_LIST_DOMAINS_FILTERS_STATE)) {
int st = hypervMsvmComputerSystemEnabledStateToDomainState(computerSystem);
if (!((MATCH(VIR_CONNECT_LIST_DOMAINS_RUNNING) &&
st == VIR_DOMAIN_RUNNING) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_PAUSED) &&
st == VIR_DOMAIN_PAUSED) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_SHUTOFF) &&
st == VIR_DOMAIN_SHUTOFF) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_OTHER) &&
(st != VIR_DOMAIN_RUNNING &&
st != VIR_DOMAIN_PAUSED &&
st != VIR_DOMAIN_SHUTOFF))))
continue;
}
/* managed save filter */
if (MATCH(VIR_CONNECT_LIST_DOMAINS_FILTERS_MANAGEDSAVE)) {
hyperv: add support for Hyper-V 2012 and newer This patch reworks the Hyper-V driver structs and the code generator to provide seamless support for both Hyper-V 2008 and 2012 or newer. This does not implement any new libvirt APIs, it just adapts existing 2008-only driver to also handle 2012 and newer by sharing as much driver code as possible (currently it's all of it :-)). This is needed to set the foundation before we can move forward with implementing the rest of the driver APIs. With the 2012 release, Microsoft introduced "v2" version of Msvm_* WMI classes. Those are largely the same as "v1" (used in 2008) but have some new properties as well as need different wsman request URIs. To accomodate those differences, most of work went into the code generator so that it's "aware" of possibility of multiple versions of the same WMI class and produce C code accordingly. To accomplish this the following changes were made: * the abstract hypervObject struct's data member was changed to a union that has "common", "v1" and "v2" members. Those are structs that represent WMI classes that we get back from wsman response. The "common" struct has members that are present in both "v1" and "v2" which the driver API callbacks can use to read the data from in version-independent manner (if version-specific member needs to be accessed the driver can check priv->wmiVersion and read from "v1" or "v2" as needed). Those structs are guaranteed to be memory aligned by the code generator (see the align_property_members implementation that takes care of that) * the generator produces *_WmiInfo for each WMI class "family" that holds an array of hypervWmiClassInfoPtr each providing information as to which request URI to use for each "version" of given WMI class as well as XmlSerializerInfo struct needed to unserilize WS-MAN responsed into the data structs. The driver uses those to make proper WS-MAN request depending on which version it's connected to. * the generator no longer produces "helper" functions such as hypervGetMsvmComputerSystemList as those were originally just simple wrappers around hypervEnumAndPull, instead those were hand-written now (to keep driver changes minimal). The reason is that we'll have more code coming implementing missing libvirt APIs and surely code patterns will emerge that would warrant more useful "utility" functions like that. * a hypervInitConnection was added to the driver which "detects" Hyper-V version by testing simple wsman request using v2 then falling back to v1, obviously if both fail, the we're erroring out. To express how the above translates in code: void hypervImplementSomeLibvirtApi(virConnectPtr conn, ...) { hypervPrivate *priv = conn->privateData; virBuffer query = VIR_BUFFER_INITIALIZER; hypervWqlQuery wqlQuery = HYPERV_WQL_QUERY_INITIALIZER; Msvm_ComputerSystem *list = NULL; /* typed hypervObject instance */ /* the WmiInfo struct has the data needed for wsman request and * response handling for both v1 and v2 */ wqlQuery.info = Msvm_ComputerSystem_WmiInfo; wqlQuery.query = &query; virBufferAddLit(&query, "select * from Msvm_ComputerSystem"); if (hypervEnumAndPull(priv, &wqlQuery, (hypervObject **) &list) < 0) { goto cleanup; } if (list == NULL) { /* none found */ goto cleanup; } /* works with v1 and v2 */ char *vmName = list->data.common->Name; /* access property that is in v2 only */ if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) char *foo = list->data.v2->V2Property; else char *foo = list->data.v1->V1Property; cleanup: hypervFreeObject(priv, (hypervObject *)list); }
2017-04-04 18:26:08 -04:00
bool mansave = computerSystem->data.common->EnabledState ==
MSVM_COMPUTERSYSTEM_ENABLEDSTATE_SUSPENDED;
if (!((MATCH(VIR_CONNECT_LIST_DOMAINS_MANAGEDSAVE) && mansave) ||
(MATCH(VIR_CONNECT_LIST_DOMAINS_NO_MANAGEDSAVE) && !mansave)))
continue;
}
if (!doms) {
count++;
continue;
}
if (VIR_RESIZE_N(doms, ndoms, count, 2) < 0)
goto cleanup;
domain = NULL;
if (hypervMsvmComputerSystemToDomain(conn, computerSystem,
&domain) < 0)
goto cleanup;
doms[count++] = domain;
}
if (doms)
*domains = doms;
doms = NULL;
ret = count;
cleanup:
if (doms) {
for (i = 0; i < count; ++i)
virObjectUnref(doms[i]);
VIR_FREE(doms);
}
hypervFreeObject(priv, (hypervObject *)computerSystemList);
return ret;
}
#undef MATCH
static int
hypervDomainSendKey(virDomainPtr domain, unsigned int codeset,
unsigned int holdtime, unsigned int *keycodes, int nkeycodes,
unsigned int flags)
{
int result = -1;
size_t i = 0;
int keycode = 0;
int *translatedKeycodes = NULL;
hypervPrivate *priv = domain->conn->privateData;
char uuid_string[VIR_UUID_STRING_BUFLEN];
char *selector = NULL;
Msvm_ComputerSystem *computerSystem = NULL;
Msvm_Keyboard *keyboard = NULL;
g_auto(virBuffer) query = VIR_BUFFER_INITIALIZER;
g_autoptr(hypervInvokeParamsList) params = NULL;
char keycodeStr[VIR_INT64_STR_BUFLEN];
virCheckFlags(0, -1);
virUUIDFormat(domain->uuid, uuid_string);
if (hypervMsvmComputerSystemFromDomain(domain, &computerSystem) < 0)
goto cleanup;
virBufferEscapeSQL(&query,
"ASSOCIATORS OF {Msvm_ComputerSystem.CreationClassName='Msvm_ComputerSystem',Name='%s'} "
"WHERE ResultClass = Msvm_Keyboard",
uuid_string);
if (hypervGetWmiClass(Msvm_Keyboard, &keyboard) < 0)
goto cleanup;
translatedKeycodes = g_new0(int, nkeycodes);
/* translate keycodes to win32 and generate keyup scancodes. */
for (i = 0; i < nkeycodes; i++) {
if (codeset != VIR_KEYCODE_SET_WIN32) {
keycode = virKeycodeValueTranslate(codeset,
VIR_KEYCODE_SET_WIN32,
keycodes[i]);
if (keycode < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Could not translate keycode"));
goto cleanup;
}
translatedKeycodes[i] = keycode;
}
}
selector = g_strdup_printf("CreationClassName=Msvm_Keyboard&DeviceID=%s&"
"SystemCreationClassName=Msvm_ComputerSystem&"
"SystemName=%s", keyboard->data.common->DeviceID, uuid_string);
/* press the keys */
for (i = 0; i < nkeycodes; i++) {
g_snprintf(keycodeStr, sizeof(keycodeStr), "%d", translatedKeycodes[i]);
params = hypervCreateInvokeParamsList(priv, "PressKey", selector,
Msvm_Keyboard_WmiInfo);
if (!params)
goto cleanup;
if (hypervAddSimpleParam(params, "keyCode", keycodeStr) < 0)
goto cleanup;
if (hypervInvokeMethod(priv, &params, NULL) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, _("Could not press key %d"),
translatedKeycodes[i]);
goto cleanup;
}
}
/* simulate holdtime by sleeping */
if (holdtime > 0)
g_usleep(holdtime * 1000);
/* release the keys */
for (i = 0; i < nkeycodes; i++) {
g_snprintf(keycodeStr, sizeof(keycodeStr), "%d", translatedKeycodes[i]);
params = hypervCreateInvokeParamsList(priv, "ReleaseKey", selector,
Msvm_Keyboard_WmiInfo);
if (!params)
goto cleanup;
if (hypervAddSimpleParam(params, "keyCode", keycodeStr) < 0)
goto cleanup;
if (hypervInvokeMethod(priv, &params, NULL) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Could not release key %s"), keycodeStr);
goto cleanup;
}
}
result = 0;
cleanup:
VIR_FREE(translatedKeycodes);
VIR_FREE(selector);
hypervFreeObject(priv, (hypervObject *)keyboard);
hypervFreeObject(priv, (hypervObject *)computerSystem);
return result;
}
static int
hypervDomainSetMemoryFlags(virDomainPtr domain, unsigned long memory,
unsigned int flags)
{
int result = -1;
char uuid_string[VIR_UUID_STRING_BUFLEN];
hypervPrivate *priv = domain->conn->privateData;
char *memory_str = NULL;
g_autoptr(hypervInvokeParamsList) params = NULL;
unsigned long memory_mb = VIR_ROUND_UP(VIR_DIV_UP(memory, 1024), 2);
Msvm_VirtualSystemSettingData *vssd = NULL;
Msvm_MemorySettingData *memsd = NULL;
g_auto(virBuffer) eprQuery = VIR_BUFFER_INITIALIZER;
g_autoptr(virHashTable) memResource = NULL;
virCheckFlags(0, -1);
memory_str = g_strdup_printf("%lu", memory_mb);
virUUIDFormat(domain->uuid, uuid_string);
if (hypervGetMsvmVirtualSystemSettingDataFromUUID(priv, uuid_string, &vssd) < 0)
goto cleanup;
if (hypervGetMsvmMemorySettingDataFromVSSD(priv, vssd->data.common->InstanceID,
&memsd) < 0)
goto cleanup;
if (priv->wmiVersion == HYPERV_WMI_VERSION_V1) {
params = hypervCreateInvokeParamsList(priv, "ModifyVirtualSystemResources",
MSVM_VIRTUALSYSTEMMANAGEMENTSERVICE_SELECTOR,
Msvm_VirtualSystemManagementService_WmiInfo);
if (!params)
goto cleanup;
virBufferEscapeSQL(&eprQuery,
MSVM_COMPUTERSYSTEM_WQL_SELECT
"WHERE Name = '%s'", uuid_string);
if (hypervAddEprParam(params, "ComputerSystem", priv, &eprQuery,
Msvm_ComputerSystem_WmiInfo) < 0)
goto cleanup;
} else if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) {
params = hypervCreateInvokeParamsList(priv, "ModifyResourceSettings",
MSVM_VIRTUALSYSTEMMANAGEMENTSERVICE_SELECTOR,
Msvm_VirtualSystemManagementService_WmiInfo);
if (!params)
goto cleanup;
}
memResource = hypervCreateEmbeddedParam(priv, Msvm_MemorySettingData_WmiInfo);
if (!memResource)
goto cleanup;
if (hypervSetEmbeddedProperty(memResource, "VirtualQuantity", memory_str) < 0)
goto cleanup;
if (hypervSetEmbeddedProperty(memResource, "InstanceID",
memsd->data.common->InstanceID) < 0) {
goto cleanup;
}
if (priv->wmiVersion == HYPERV_WMI_VERSION_V1) {
if (hypervAddEmbeddedParam(params, priv, "ResourceSettingData",
&memResource, Msvm_MemorySettingData_WmiInfo) < 0) {
goto cleanup;
}
} else if (priv->wmiVersion == HYPERV_WMI_VERSION_V2) {
if (hypervAddEmbeddedParam(params, priv, "ResourceSettings",
&memResource, Msvm_MemorySettingData_WmiInfo) < 0) {
hypervFreeEmbeddedParam(memResource);
goto cleanup;
}
}
if (hypervInvokeMethod(priv, &params, NULL) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("Could not set memory"));
goto cleanup;
}
result = 0;
cleanup:
VIR_FREE(memory_str);
hypervFreeObject(priv, (hypervObject *)vssd);
hypervFreeObject(priv, (hypervObject *)memsd);
return result;
}
static int
hypervDomainSetMemory(virDomainPtr domain, unsigned long memory)
{
return hypervDomainSetMemoryFlags(domain, memory, 0);
}
static virHypervisorDriver hypervHypervisorDriver = {
2011-07-13 16:47:01 +02:00
.name = "Hyper-V",
.connectOpen = hypervConnectOpen, /* 0.9.5 */
.connectClose = hypervConnectClose, /* 0.9.5 */
.connectGetType = hypervConnectGetType, /* 0.9.5 */
.connectGetVersion = hypervConnectGetVersion, /* 6.9.0 */
.connectGetHostname = hypervConnectGetHostname, /* 0.9.5 */
.connectGetMaxVcpus = hypervConnectGetMaxVcpus, /* 6.9.0 */
.nodeGetInfo = hypervNodeGetInfo, /* 0.9.5 */
.connectGetCapabilities = hypervConnectGetCapabilities, /* 6.9.0 */
.connectListDomains = hypervConnectListDomains, /* 0.9.5 */
.connectNumOfDomains = hypervConnectNumOfDomains, /* 0.9.5 */
.connectListAllDomains = hypervConnectListAllDomains, /* 0.10.2 */
.domainLookupByID = hypervDomainLookupByID, /* 0.9.5 */
.domainLookupByUUID = hypervDomainLookupByUUID, /* 0.9.5 */
.domainLookupByName = hypervDomainLookupByName, /* 0.9.5 */
.domainSuspend = hypervDomainSuspend, /* 0.9.5 */
.domainResume = hypervDomainResume, /* 0.9.5 */
.domainShutdown = hypervDomainShutdown, /* 6.9.0 */
.domainShutdownFlags = hypervDomainShutdownFlags, /* 6.9.0 */
.domainReboot = hypervDomainReboot, /* 6.9.0 */
.domainReset = hypervDomainReset, /* 6.9.0 */
.domainDestroy = hypervDomainDestroy, /* 0.9.5 */
.domainDestroyFlags = hypervDomainDestroyFlags, /* 0.9.5 */
.domainGetOSType = hypervDomainGetOSType, /* 0.9.5 */
.domainGetInfo = hypervDomainGetInfo, /* 0.9.5 */
.domainGetState = hypervDomainGetState, /* 0.9.5 */
.domainGetXMLDesc = hypervDomainGetXMLDesc, /* 0.9.5 */
.connectListDefinedDomains = hypervConnectListDefinedDomains, /* 0.9.5 */
.connectNumOfDefinedDomains = hypervConnectNumOfDefinedDomains, /* 0.9.5 */
.domainCreate = hypervDomainCreate, /* 0.9.5 */
.domainCreateWithFlags = hypervDomainCreateWithFlags, /* 0.9.5 */
.domainGetAutostart = hypervDomainGetAutostart, /* 6.9.0 */
.domainSetAutostart = hypervDomainSetAutostart, /* 6.9.0 */
.nodeGetFreeMemory = hypervNodeGetFreeMemory, /* 6.9.0 */
.connectIsEncrypted = hypervConnectIsEncrypted, /* 0.9.5 */
.connectIsSecure = hypervConnectIsSecure, /* 0.9.5 */
.domainIsActive = hypervDomainIsActive, /* 0.9.5 */
.domainIsPersistent = hypervDomainIsPersistent, /* 0.9.5 */
.domainIsUpdated = hypervDomainIsUpdated, /* 0.9.5 */
.domainManagedSave = hypervDomainManagedSave, /* 0.9.5 */
.domainHasManagedSaveImage = hypervDomainHasManagedSaveImage, /* 0.9.5 */
.domainManagedSaveRemove = hypervDomainManagedSaveRemove, /* 0.9.5 */
.domainSendKey = hypervDomainSendKey, /* 3.6.0 */
.domainSetMemory = hypervDomainSetMemory, /* 3.6.0 */
.domainSetMemoryFlags = hypervDomainSetMemoryFlags, /* 3.6.0 */
.connectIsAlive = hypervConnectIsAlive, /* 0.9.8 */
2011-07-13 16:47:01 +02:00
};
static void
hypervDebugHandler(const char *message, debug_level_e level,
void *user_data G_GNUC_UNUSED)
{
switch (level) {
case DEBUG_LEVEL_ERROR:
case DEBUG_LEVEL_CRITICAL:
case DEBUG_LEVEL_ALWAYS:
VIR_ERROR(_("openwsman: %s"), message);
break;
case DEBUG_LEVEL_WARNING:
VIR_WARN("openwsman: %s", message);
break;
case DEBUG_LEVEL_MESSAGE:
VIR_INFO("openwsman: %s", message);
break;
case DEBUG_LEVEL_INFO:
VIR_INFO("openwsman: %s", message);
break;
case DEBUG_LEVEL_DEBUG:
VIR_DEBUG("openwsman: %s", message);
break;
case DEBUG_LEVEL_NONE:
default:
/* Ignore the rest */
break;
}
}
static virConnectDriver hypervConnectDriver = {
.remoteOnly = true,
.uriSchemes = (const char *[]){ "hyperv", NULL },
.hypervisorDriver = &hypervHypervisorDriver,
};
2011-07-13 16:47:01 +02:00
int
hypervRegister(void)
{
/* Forward openwsman errors and warnings to libvirt's logging */
debug_add_handler(hypervDebugHandler, DEBUG_LEVEL_WARNING, NULL);
return virRegisterConnectDriver(&hypervConnectDriver,
false);
2011-07-13 16:47:01 +02:00
}