libvirt/src/qemu/qemu_hotplug.c

1974 lines
67 KiB
C
Raw Normal View History

/*
* qemu_hotplug.h: QEMU device hotplug management
*
domain_conf: split source data out from ChrDef This opens up the possibility of reusing the smaller ChrSourceDef for both qemu monitor and a passthrough smartcard device. * src/conf/domain_conf.h (_virDomainChrDef): Factor host details... (_virDomainChrSourceDef): ...into new struct. (virDomainChrSourceDefFree): New prototype. * src/conf/domain_conf.c (virDomainChrDefFree) (virDomainChrDefParseXML, virDomainChrDefFormat): Split... (virDomainChrSourceDefClear, virDomainChrSourceDefFree) (virDomainChrSourceDefParseXML, virDomainChrSourceDefFormat): ...into new functions. (virDomainChrDefParseTargetXML): Update clients to reflect type split. * src/vmx/vmx.c (virVMXParseSerial, virVMXParseParallel) (virVMXFormatSerial, virVMXFormatParallel): Likewise. * src/xen/xen_driver.c (xenUnifiedDomainOpenConsole): Likewise. * src/xen/xend_internal.c (xenDaemonParseSxprChar) (xenDaemonFormatSxprChr): Likewise. * src/vbox/vbox_tmpl.c (vboxDomainDumpXML, vboxAttachSerial) (vboxAttachParallel): Likewise. * src/security/security_dac.c (virSecurityDACSetChardevLabel) (virSecurityDACSetChardevCallback) (virSecurityDACRestoreChardevLabel) (virSecurityDACRestoreChardevCallback): Likewise. * src/security/security_selinux.c (SELinuxSetSecurityChardevLabel) (SELinuxSetSecurityChardevCallback) (SELinuxRestoreSecurityChardevLabel) (SELinuxSetSecurityChardevCallback): Likewise. * src/security/virt-aa-helper.c (get_files): Likewise. * src/lxc/lxc_driver.c (lxcVmStart, lxcDomainOpenConsole): Likewise. * src/uml/uml_conf.c (umlBuildCommandLineChr): Likewise. * src/uml/uml_driver.c (umlIdentifyOneChrPTY, umlIdentifyChrPTY) (umlDomainOpenConsole): Likewise. * src/qemu/qemu_command.c (qemuBuildChrChardevStr) (qemuBuildChrArgStr, qemuBuildCommandLine) (qemuParseCommandLineChr): Likewise. * src/qemu/qemu_domain.c (qemuDomainObjPrivateXMLFormat) (qemuDomainObjPrivateXMLParse): Likewise. * src/qemu/qemu_cgroup.c (qemuSetupChardevCgroup): Likewise. * src/qemu/qemu_hotplug.c (qemuDomainAttachNetDevice): Likewise. * src/qemu/qemu_driver.c (qemudFindCharDevicePTYsMonitor) (qemudFindCharDevicePTYs, qemuPrepareChardevDevice) (qemuPrepareMonitorChr, qemudShutdownVMDaemon) (qemuDomainOpenConsole): Likewise. * src/qemu/qemu_command.h (qemuBuildChrChardevStr) (qemuBuildChrArgStr): Delete, now that they are static. * src/libvirt_private.syms (domain_conf.h): New exports. * cfg.mk (useless_free_options): Update list. * tests/qemuxml2argvtest.c (testCompareXMLToArgvFiles): Update tests.
2011-01-07 22:45:01 +00:00
* Copyright (C) 2006-2011 Red Hat, Inc.
* Copyright (C) 2006 Daniel P. Berrange
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Daniel P. Berrange <berrange@redhat.com>
*/
#include <config.h>
#include "qemu_hotplug.h"
#include "qemu_capabilities.h"
#include "qemu_domain.h"
#include "qemu_command.h"
#include "qemu_bridge_filter.h"
#include "qemu_hostdev.h"
#include "domain_audit.h"
#include "domain_nwfilter.h"
#include "logging.h"
#include "virterror_internal.h"
#include "memory.h"
#include "pci.h"
#include "virfile.h"
#include "qemu_cgroup.h"
#include "locking/domain_lock.h"
#define VIR_FROM_THIS VIR_FROM_QEMU
int qemuDomainChangeEjectableMedia(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDiskDefPtr disk,
bool force)
{
virDomainDiskDefPtr origdisk = NULL;
int i;
int ret;
char *driveAlias = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
for (i = 0 ; i < vm->def->ndisks ; i++) {
if (vm->def->disks[i]->bus == disk->bus &&
STREQ(vm->def->disks[i]->dst, disk->dst)) {
origdisk = vm->def->disks[i];
break;
}
}
if (!origdisk) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("No device with bus '%s' and target '%s'"),
virDomainDiskBusTypeToString(disk->bus),
disk->dst);
return -1;
}
if (!origdisk->info.alias) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("missing disk device alias name for %s"), origdisk->dst);
return -1;
}
if (origdisk->device != VIR_DOMAIN_DISK_DEVICE_FLOPPY &&
origdisk->device != VIR_DOMAIN_DISK_DEVICE_CDROM) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("Removable media not supported for %s device"),
virDomainDiskDeviceTypeToString(disk->device));
return -1;
}
if (virDomainLockDiskAttach(driver->lockManager, vm, disk) < 0)
return -1;
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerSetImageLabel(driver->securityManager,
vm, disk) < 0) {
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
if (!(driveAlias = qemuDeviceDriveHostAlias(origdisk, priv->qemuCaps)))
goto error;
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (disk->src) {
const char *format = NULL;
if (disk->type != VIR_DOMAIN_DISK_TYPE_DIR) {
if (disk->driverType)
format = disk->driverType;
else if (origdisk->driverType)
format = origdisk->driverType;
}
ret = qemuMonitorChangeMedia(priv->mon,
driveAlias,
disk->src, format);
} else {
ret = qemuMonitorEjectMedia(priv->mon, driveAlias, force);
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, origdisk, disk, "update", ret >= 0);
if (ret < 0)
goto error;
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, origdisk) < 0)
VIR_WARN("Unable to restore security label on ejected image %s", origdisk->src);
if (virDomainLockDiskDetach(driver->lockManager, vm, origdisk) < 0)
VIR_WARN("Unable to release lock on disk %s", origdisk->src);
VIR_FREE(origdisk->src);
origdisk->src = disk->src;
disk->src = NULL;
origdisk->type = disk->type;
VIR_FREE(driveAlias);
virDomainDiskDefFree(disk);
return ret;
error:
VIR_FREE(driveAlias);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, disk) < 0)
VIR_WARN("Unable to restore security label on new media %s", disk->src);
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
int qemuDomainAttachPciDiskDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDiskDefPtr disk)
{
int i, ret;
const char* type = virDomainDiskBusTypeToString(disk->bus);
qemuDomainObjPrivatePtr priv = vm->privateData;
char *devstr = NULL;
char *drivestr = NULL;
bool releaseaddr = false;
for (i = 0 ; i < vm->def->ndisks ; i++) {
if (STREQ(vm->def->disks[i]->dst, disk->dst)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("target %s already exists"), disk->dst);
return -1;
}
}
if (virDomainLockDiskAttach(driver->lockManager, vm, disk) < 0)
return -1;
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerSetImageLabel(driver->securityManager,
vm, disk) < 0) {
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuDomainPCIAddressEnsureAddr(priv->pciaddrs, &disk->info) < 0)
goto error;
releaseaddr = true;
if (qemuAssignDeviceDiskAlias(disk, priv->qemuCaps) < 0)
goto error;
if (!(drivestr = qemuBuildDriveStr(disk, false, priv->qemuCaps)))
goto error;
if (!(devstr = qemuBuildDriveDevStr(disk, 0, priv->qemuCaps)))
goto error;
}
if (VIR_REALLOC_N(vm->def->disks, vm->def->ndisks+1) < 0) {
virReportOOMError();
goto error;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
ret = qemuMonitorAddDrive(priv->mon, drivestr);
if (ret == 0) {
ret = qemuMonitorAddDevice(priv->mon, devstr);
if (ret < 0) {
VIR_WARN("qemuMonitorAddDevice failed on %s (%s)",
drivestr, devstr);
/* XXX should call 'drive_del' on error but this does not
exist yet */
}
}
} else {
virDomainDevicePCIAddress guestAddr;
ret = qemuMonitorAddPCIDisk(priv->mon,
disk->src,
type,
&guestAddr);
if (ret == 0) {
disk->info.type = VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI;
memcpy(&disk->info.addr.pci, &guestAddr, sizeof(guestAddr));
}
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, NULL, disk, "attach", ret >= 0);
if (ret < 0)
goto error;
virDomainDiskInsertPreAlloced(vm->def, disk);
VIR_FREE(devstr);
VIR_FREE(drivestr);
return 0;
error:
VIR_FREE(devstr);
VIR_FREE(drivestr);
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
(disk->info.type == VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI) &&
releaseaddr &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
disk->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on %s", disk->src);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, disk) < 0)
VIR_WARN("Unable to restore security label on %s", disk->src);
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
int qemuDomainAttachPciControllerDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainControllerDefPtr controller)
{
int i;
int ret = -1;
const char* type = virDomainControllerTypeToString(controller->type);
char *devstr = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
bool releaseaddr = false;
for (i = 0 ; i < vm->def->ncontrollers ; i++) {
if ((vm->def->controllers[i]->type == controller->type) &&
(vm->def->controllers[i]->idx == controller->idx)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("target %s:%d already exists"),
type, controller->idx);
return -1;
}
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuDomainPCIAddressEnsureAddr(priv->pciaddrs, &controller->info) < 0)
goto cleanup;
releaseaddr = true;
if (qemuAssignDeviceControllerAlias(controller) < 0)
goto cleanup;
if (!(devstr = qemuBuildControllerDevStr(controller, priv->qemuCaps))) {
goto cleanup;
}
}
if (VIR_REALLOC_N(vm->def->controllers, vm->def->ncontrollers+1) < 0) {
virReportOOMError();
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
ret = qemuMonitorAddDevice(priv->mon, devstr);
} else {
ret = qemuMonitorAttachPCIDiskController(priv->mon,
type,
&controller->info.addr.pci);
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
if (ret == 0) {
controller->info.type = VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI;
virDomainControllerInsertPreAlloced(vm->def, controller);
}
cleanup:
if ((ret != 0) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
(controller->info.type == VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI) &&
releaseaddr &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
controller->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on controller");
VIR_FREE(devstr);
return ret;
}
static virDomainControllerDefPtr
qemuDomainFindOrCreateSCSIDiskController(struct qemud_driver *driver,
virDomainObjPtr vm,
int controller)
{
int i;
virDomainControllerDefPtr cont;
for (i = 0 ; i < vm->def->ncontrollers ; i++) {
cont = vm->def->controllers[i];
if (cont->type != VIR_DOMAIN_CONTROLLER_TYPE_SCSI)
continue;
if (cont->idx == controller)
return cont;
}
/* No SCSI controller present, for backward compatibility we
* now hotplug a controller */
if (VIR_ALLOC(cont) < 0) {
virReportOOMError();
return NULL;
}
cont->type = VIR_DOMAIN_CONTROLLER_TYPE_SCSI;
cont->idx = controller;
cont->model = -1;
VIR_INFO("No SCSI controller present, hotplugging one");
if (qemuDomainAttachPciControllerDevice(driver,
vm, cont) < 0) {
VIR_FREE(cont);
return NULL;
}
if (!virDomainObjIsActive(vm)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("guest unexpectedly quit"));
/* cont doesn't need freeing here, since the reference
* now held in def->controllers */
return NULL;
}
return cont;
}
int qemuDomainAttachSCSIDisk(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDiskDefPtr disk)
{
int i;
qemuDomainObjPrivatePtr priv = vm->privateData;
virDomainControllerDefPtr cont = NULL;
char *drivestr = NULL;
char *devstr = NULL;
int ret = -1;
for (i = 0 ; i < vm->def->ndisks ; i++) {
if (STREQ(vm->def->disks[i]->dst, disk->dst)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("target %s already exists"), disk->dst);
return -1;
}
}
if (virDomainLockDiskAttach(driver->lockManager, vm, disk) < 0)
return -1;
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerSetImageLabel(driver->securityManager,
vm, disk) < 0) {
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
/* We should have an address already, so make sure */
if (disk->info.type != VIR_DOMAIN_DEVICE_ADDRESS_TYPE_DRIVE) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("unexpected disk address type %s"),
virDomainDeviceAddressTypeToString(disk->info.type));
goto error;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceDiskAlias(disk, priv->qemuCaps) < 0)
goto error;
if (!(devstr = qemuBuildDriveDevStr(disk, 0, priv->qemuCaps)))
goto error;
}
if (!(drivestr = qemuBuildDriveStr(disk, false, priv->qemuCaps)))
goto error;
for (i = 0 ; i <= disk->info.addr.drive.controller ; i++) {
cont = qemuDomainFindOrCreateSCSIDiskController(driver, vm, i);
if (!cont)
goto error;
}
/* Tell clang that "cont" is non-NULL.
This is because disk->info.addr.driver.controller is unsigned,
and hence the above loop must iterate at least once. */
sa_assert (cont);
if (cont->info.type != VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("SCSI controller %d was missing its PCI address"), cont->idx);
goto error;
}
if (VIR_REALLOC_N(vm->def->disks, vm->def->ndisks+1) < 0) {
virReportOOMError();
goto error;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
ret = qemuMonitorAddDrive(priv->mon, drivestr);
if (ret == 0) {
ret = qemuMonitorAddDevice(priv->mon, devstr);
if (ret < 0) {
VIR_WARN("qemuMonitorAddDevice failed on %s (%s)",
drivestr, devstr);
/* XXX should call 'drive_del' on error but this does not
exist yet */
}
}
} else {
virDomainDeviceDriveAddress driveAddr;
ret = qemuMonitorAttachDrive(priv->mon,
drivestr,
&cont->info.addr.pci,
&driveAddr);
if (ret == 0) {
/* XXX we should probably validate that the addr matches
* our existing defined addr instead of overwriting */
disk->info.type = VIR_DOMAIN_DEVICE_ADDRESS_TYPE_DRIVE;
memcpy(&disk->info.addr.drive, &driveAddr, sizeof(driveAddr));
}
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, NULL, disk, "attach", ret >= 0);
if (ret < 0)
goto error;
virDomainDiskInsertPreAlloced(vm->def, disk);
VIR_FREE(devstr);
VIR_FREE(drivestr);
return 0;
error:
VIR_FREE(devstr);
VIR_FREE(drivestr);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, disk) < 0)
VIR_WARN("Unable to restore security label on %s", disk->src);
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
int qemuDomainAttachUsbMassstorageDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDiskDefPtr disk)
{
qemuDomainObjPrivatePtr priv = vm->privateData;
int i, ret;
char *drivestr = NULL;
char *devstr = NULL;
for (i = 0 ; i < vm->def->ndisks ; i++) {
if (STREQ(vm->def->disks[i]->dst, disk->dst)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("target %s already exists"), disk->dst);
return -1;
}
}
if (virDomainLockDiskAttach(driver->lockManager, vm, disk) < 0)
return -1;
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerSetImageLabel(driver->securityManager,
vm, disk) < 0) {
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
/* XXX not correct once we allow attaching a USB CDROM */
if (!disk->src) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("disk source path is missing"));
goto error;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceDiskAlias(disk, priv->qemuCaps) < 0)
goto error;
if (!(drivestr = qemuBuildDriveStr(disk, false, priv->qemuCaps)))
goto error;
if (!(devstr = qemuBuildDriveDevStr(disk, 0, priv->qemuCaps)))
goto error;
}
if (VIR_REALLOC_N(vm->def->disks, vm->def->ndisks+1) < 0) {
virReportOOMError();
goto error;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
ret = qemuMonitorAddDrive(priv->mon, drivestr);
if (ret == 0) {
ret = qemuMonitorAddDevice(priv->mon, devstr);
if (ret < 0) {
VIR_WARN("qemuMonitorAddDevice failed on %s (%s)",
drivestr, devstr);
/* XXX should call 'drive_del' on error but this does not
exist yet */
}
}
} else {
ret = qemuMonitorAddUSBDisk(priv->mon, disk->src);
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, NULL, disk, "attach", ret >= 0);
if (ret < 0)
goto error;
virDomainDiskInsertPreAlloced(vm->def, disk);
VIR_FREE(devstr);
VIR_FREE(drivestr);
return 0;
error:
VIR_FREE(devstr);
VIR_FREE(drivestr);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, disk) < 0)
VIR_WARN("Unable to restore security label on %s", disk->src);
if (virDomainLockDiskDetach(driver->lockManager, vm, disk) < 0)
VIR_WARN("Unable to release lock on %s", disk->src);
return -1;
}
/* XXX conn required for network -> bridge resolution */
int qemuDomainAttachNetDevice(virConnectPtr conn,
struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainNetDefPtr net)
{
qemuDomainObjPrivatePtr priv = vm->privateData;
char *tapfd_name = NULL;
int tapfd = -1;
char *vhostfd_name = NULL;
int vhostfd = -1;
char *nicstr = NULL;
char *netstr = NULL;
int ret = -1;
virDomainDevicePCIAddress guestAddr;
int vlan;
bool releaseaddr = false;
if (!qemuCapsGet(priv->qemuCaps, QEMU_CAPS_HOST_NET_ADD)) {
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED, "%s",
_("installed qemu version does not support host_net_add"));
return -1;
}
if (net->type == VIR_DOMAIN_NET_TYPE_BRIDGE ||
net->type == VIR_DOMAIN_NET_TYPE_NETWORK) {
audit: audit use of /dev/net/tun, /dev/tapN, /dev/vhost-net Opening raw network devices with the intent of passing those fds to qemu is worth an audit point. This makes a multi-part audit: first, we audit the device(s) that libvirt opens on behalf of the MAC address of a to-be-created interface (which can independently succeed or fail), then we audit whether qemu actually started the network device with the same MAC (so searching backwards for successful audits with the same MAC will show which fd(s) qemu is actually using). Note that it is possible for the fd to be successfully opened but no attempt made to pass the fd to qemu (for example, because intermediate nwfilter operations failed) - no interface start audit will occur in that case; so the audit for a successful opened fd does not imply rights given to qemu unless there is a followup audit about the attempt to start a new interface. Likewise, when a network device is hot-unplugged, there is only one audit message about the MAC being discontinued; again, searching back to the earlier device open audits will show which fds that qemu quits using (and yes, I checked via /proc/<qemu-pid>/fd that qemu _does_ close out the fds associated with an interface on hot-unplug). The code would require much more refactoring to be able to definitively state which device(s) were discontinued at that point, since we currently don't record anywhere in the XML whether /dev/vhost-net was opened for a given interface. * src/qemu/qemu_audit.h (qemuAuditNetDevice): New prototype. * src/qemu/qemu_audit.c (qemuAuditNetDevice): New function. * src/qemu/qemu_command.h (qemuNetworkIfaceConnect) (qemuPhysIfaceConnect, qemuOpenVhostNet): Adjust prototype. * src/qemu/qemu_command.c (qemuNetworkIfaceConnect) (qemuPhysIfaceConnect, qemuOpenVhostNet): Add audit points and adjust parameters. (qemuBuildCommandLine): Adjust caller. * src/qemu/qemu_hotplug.c (qemuDomainAttachNetDevice): Likewise.
2011-03-08 18:00:59 +00:00
if ((tapfd = qemuNetworkIfaceConnect(vm->def, conn, driver, net,
priv->qemuCaps)) < 0)
return -1;
if (qemuOpenVhostNet(vm->def, net, priv->qemuCaps, &vhostfd) < 0)
goto cleanup;
} else if (net->type == VIR_DOMAIN_NET_TYPE_DIRECT) {
audit: audit use of /dev/net/tun, /dev/tapN, /dev/vhost-net Opening raw network devices with the intent of passing those fds to qemu is worth an audit point. This makes a multi-part audit: first, we audit the device(s) that libvirt opens on behalf of the MAC address of a to-be-created interface (which can independently succeed or fail), then we audit whether qemu actually started the network device with the same MAC (so searching backwards for successful audits with the same MAC will show which fd(s) qemu is actually using). Note that it is possible for the fd to be successfully opened but no attempt made to pass the fd to qemu (for example, because intermediate nwfilter operations failed) - no interface start audit will occur in that case; so the audit for a successful opened fd does not imply rights given to qemu unless there is a followup audit about the attempt to start a new interface. Likewise, when a network device is hot-unplugged, there is only one audit message about the MAC being discontinued; again, searching back to the earlier device open audits will show which fds that qemu quits using (and yes, I checked via /proc/<qemu-pid>/fd that qemu _does_ close out the fds associated with an interface on hot-unplug). The code would require much more refactoring to be able to definitively state which device(s) were discontinued at that point, since we currently don't record anywhere in the XML whether /dev/vhost-net was opened for a given interface. * src/qemu/qemu_audit.h (qemuAuditNetDevice): New prototype. * src/qemu/qemu_audit.c (qemuAuditNetDevice): New function. * src/qemu/qemu_command.h (qemuNetworkIfaceConnect) (qemuPhysIfaceConnect, qemuOpenVhostNet): Adjust prototype. * src/qemu/qemu_command.c (qemuNetworkIfaceConnect) (qemuPhysIfaceConnect, qemuOpenVhostNet): Add audit points and adjust parameters. (qemuBuildCommandLine): Adjust caller. * src/qemu/qemu_hotplug.c (qemuDomainAttachNetDevice): Likewise.
2011-03-08 18:00:59 +00:00
if ((tapfd = qemuPhysIfaceConnect(vm->def, conn, driver, net,
priv->qemuCaps,
VIR_VM_OP_CREATE)) < 0)
return -1;
if (qemuOpenVhostNet(vm->def, net, priv->qemuCaps, &vhostfd) < 0)
goto cleanup;
}
if (VIR_REALLOC_N(vm->def->nets, vm->def->nnets+1) < 0)
goto no_memory;
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NET_NAME) ||
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceNetAlias(vm->def, net, -1) < 0)
goto cleanup;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
qemuDomainPCIAddressEnsureAddr(priv->pciaddrs, &net->info) < 0)
goto cleanup;
releaseaddr = true;
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NETDEV) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
vlan = -1;
} else {
vlan = qemuDomainNetVLAN(net);
if (vlan < 0) {
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED, "%s",
_("Unable to attach network devices without vlan"));
goto cleanup;
}
}
if (tapfd != -1) {
if (virAsprintf(&tapfd_name, "fd-%s", net->info.alias) < 0)
goto no_memory;
}
if (vhostfd != -1) {
if (virAsprintf(&vhostfd_name, "vhostfd-%s", net->info.alias) < 0)
goto no_memory;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NETDEV) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (!(netstr = qemuBuildHostNetStr(net, ',',
-1, tapfd_name, vhostfd_name)))
goto cleanup;
} else {
if (!(netstr = qemuBuildHostNetStr(net, ' ',
vlan, tapfd_name, vhostfd_name)))
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NETDEV) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorAddNetdev(priv->mon, netstr, tapfd, tapfd_name,
vhostfd, vhostfd_name) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, NULL, net, "attach", false);
goto cleanup;
}
} else {
if (qemuMonitorAddHostNetwork(priv->mon, netstr, tapfd, tapfd_name,
vhostfd, vhostfd_name) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, NULL, net, "attach", false);
goto cleanup;
}
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
VIR_FORCE_CLOSE(tapfd);
VIR_FORCE_CLOSE(vhostfd);
if (!virDomainObjIsActive(vm)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("guest unexpectedly quit"));
goto cleanup;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (!(nicstr = qemuBuildNicDevStr(net, vlan, 0, priv->qemuCaps)))
goto try_remove;
} else {
if (!(nicstr = qemuBuildNicStr(net, NULL, vlan)))
goto try_remove;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorAddDevice(priv->mon, nicstr) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, NULL, net, "attach", false);
goto try_remove;
}
} else {
if (qemuMonitorAddPCINetwork(priv->mon, nicstr,
&guestAddr) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, NULL, net, "attach", false);
goto try_remove;
}
net->info.type = VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI;
memcpy(&net->info.addr.pci, &guestAddr, sizeof(guestAddr));
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, NULL, net, "attach", true);
ret = 0;
vm->def->nets[vm->def->nnets++] = net;
cleanup:
if ((ret != 0) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
(net->info.type == VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI) &&
releaseaddr &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
net->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on NIC");
if (ret != 0)
virDomainConfNWFilterTeardown(net);
VIR_FREE(nicstr);
VIR_FREE(netstr);
VIR_FREE(tapfd_name);
VIR_FORCE_CLOSE(tapfd);
VIR_FREE(vhostfd_name);
VIR_FORCE_CLOSE(vhostfd);
return ret;
try_remove:
if (!virDomainObjIsActive(vm))
goto cleanup;
if (vlan < 0) {
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NETDEV) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
char *netdev_name;
if (virAsprintf(&netdev_name, "host%s", net->info.alias) < 0)
goto no_memory;
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuMonitorRemoveNetdev(priv->mon, netdev_name) < 0)
VIR_WARN("Failed to remove network backend for netdev %s",
netdev_name);
qemuDomainObjExitMonitorWithDriver(driver, vm);
VIR_FREE(netdev_name);
} else {
VIR_WARN("Unable to remove network backend");
}
} else {
char *hostnet_name;
if (virAsprintf(&hostnet_name, "host%s", net->info.alias) < 0)
goto no_memory;
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuMonitorRemoveHostNetwork(priv->mon, vlan, hostnet_name) < 0)
VIR_WARN("Failed to remove network backend for vlan %d, net %s",
vlan, hostnet_name);
qemuDomainObjExitMonitorWithDriver(driver, vm);
VIR_FREE(hostnet_name);
}
goto cleanup;
no_memory:
virReportOOMError();
goto cleanup;
}
int qemuDomainAttachHostPciDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainHostdevDefPtr hostdev)
{
qemuDomainObjPrivatePtr priv = vm->privateData;
int ret;
char *devstr = NULL;
int configfd = -1;
char *configfd_name = NULL;
bool releaseaddr = false;
if (VIR_REALLOC_N(vm->def->hostdevs, vm->def->nhostdevs+1) < 0) {
virReportOOMError();
return -1;
}
if (qemuPrepareHostdevPCIDevices(driver, &hostdev, 1) < 0)
return -1;
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceHostdevAlias(vm->def, hostdev, -1) < 0)
goto error;
if (qemuDomainPCIAddressEnsureAddr(priv->pciaddrs, &hostdev->info) < 0)
goto error;
releaseaddr = true;
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_PCI_CONFIGFD)) {
configfd = qemuOpenPCIConfig(hostdev);
if (configfd >= 0) {
if (virAsprintf(&configfd_name, "fd-%s",
hostdev->info.alias) < 0) {
virReportOOMError();
goto error;
}
}
}
if (!virDomainObjIsActive(vm)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("guest unexpectedly quit during hotplug"));
goto error;
}
if (!(devstr = qemuBuildPCIHostdevDevStr(hostdev, configfd_name,
priv->qemuCaps)))
goto error;
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
ret = qemuMonitorAddDeviceWithFd(priv->mon, devstr,
configfd, configfd_name);
qemuDomainObjExitMonitorWithDriver(driver, vm);
} else {
virDomainDevicePCIAddress guestAddr;
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
ret = qemuMonitorAddPCIHostDevice(priv->mon,
&hostdev->source.subsys.u.pci,
&guestAddr);
qemuDomainObjExitMonitorWithDriver(driver, vm);
hostdev->info.type = VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI;
memcpy(&hostdev->info.addr.pci, &guestAddr, sizeof(guestAddr));
}
virDomainAuditHostdev(vm, hostdev, "attach", ret == 0);
if (ret < 0)
goto error;
vm->def->hostdevs[vm->def->nhostdevs++] = hostdev;
VIR_FREE(devstr);
VIR_FREE(configfd_name);
VIR_FORCE_CLOSE(configfd);
return 0;
error:
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
(hostdev->info.type == VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI) &&
releaseaddr &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
hostdev->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on host device");
qemuDomainReAttachHostdevDevices(driver, &hostdev, 1);
VIR_FREE(devstr);
VIR_FREE(configfd_name);
VIR_FORCE_CLOSE(configfd);
return -1;
}
int qemuDomainAttachHostUsbDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainHostdevDefPtr hostdev)
{
int ret;
qemuDomainObjPrivatePtr priv = vm->privateData;
char *devstr = NULL;
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceHostdevAlias(vm->def, hostdev, -1) < 0)
goto error;
if (!(devstr = qemuBuildUSBHostdevDevStr(hostdev)))
goto error;
}
if (VIR_REALLOC_N(vm->def->hostdevs, vm->def->nhostdevs+1) < 0) {
virReportOOMError();
goto error;
}
if (qemuCgroupControllerActive(driver, VIR_CGROUP_CONTROLLER_DEVICES)) {
virCgroupPtr cgroup = NULL;
usbDevice *usb;
qemuCgroupData data;
if (virCgroupForDomain(driver->cgroup, vm->def->name, &cgroup, 0) !=0 ) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("Unable to find cgroup for %s"),
vm->def->name);
goto error;
}
if ((usb = usbGetDevice(hostdev->source.subsys.u.usb.bus,
hostdev->source.subsys.u.usb.device)) == NULL)
goto error;
data.vm = vm;
data.cgroup = cgroup;
if (usbDeviceFileIterate(usb, qemuSetupHostUsbDeviceCgroup, &data) < 0)
goto error;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE))
ret = qemuMonitorAddDevice(priv->mon, devstr);
else
ret = qemuMonitorAddUSBDeviceExact(priv->mon,
hostdev->source.subsys.u.usb.bus,
hostdev->source.subsys.u.usb.device);
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditHostdev(vm, hostdev, "attach", ret == 0);
if (ret < 0)
goto error;
vm->def->hostdevs[vm->def->nhostdevs++] = hostdev;
VIR_FREE(devstr);
return 0;
error:
VIR_FREE(devstr);
return -1;
}
int qemuDomainAttachHostDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainHostdevDefPtr hostdev)
{
if (hostdev->mode != VIR_DOMAIN_HOSTDEV_MODE_SUBSYS) {
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("hostdev mode '%s' not supported"),
virDomainHostdevModeTypeToString(hostdev->mode));
return -1;
}
/* Resolve USB product/vendor to bus/device */
if (hostdev->source.subsys.type == VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_USB &&
hostdev->source.subsys.u.usb.vendor) {
usbDevice *usb
= usbFindDevice(hostdev->source.subsys.u.usb.vendor,
hostdev->source.subsys.u.usb.product);
if (!usb)
return -1;
hostdev->source.subsys.u.usb.bus = usbDeviceGetBus(usb);
hostdev->source.subsys.u.usb.device = usbDeviceGetDevno(usb);
usbFreeDevice(usb);
}
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerSetHostdevLabel(driver->securityManager,
vm, hostdev) < 0)
return -1;
switch (hostdev->source.subsys.type) {
case VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_PCI:
if (qemuDomainAttachHostPciDevice(driver, vm,
hostdev) < 0)
goto error;
break;
case VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_USB:
if (qemuDomainAttachHostUsbDevice(driver, vm,
hostdev) < 0)
goto error;
break;
default:
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("hostdev subsys type '%s' not supported"),
virDomainHostdevSubsysTypeToString(hostdev->source.subsys.type));
goto error;
}
return 0;
error:
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreHostdevLabel(driver->securityManager,
vm, hostdev) < 0)
VIR_WARN("Unable to restore host device labelling on hotplug fail");
return -1;
}
static virDomainGraphicsDefPtr qemuDomainFindGraphics(virDomainObjPtr vm,
virDomainGraphicsDefPtr dev)
{
int i;
for (i = 0 ; i < vm->def->ngraphics ; i++) {
if (vm->def->graphics[i]->type == dev->type)
return vm->def->graphics[i];
}
return NULL;
}
int
qemuDomainChangeGraphics(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainGraphicsDefPtr dev)
{
virDomainGraphicsDefPtr olddev = qemuDomainFindGraphics(vm, dev);
int ret = -1;
if (!olddev) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot find existing graphics device to modify"));
return -1;
}
switch (dev->type) {
case VIR_DOMAIN_GRAPHICS_TYPE_VNC:
if ((olddev->data.vnc.autoport != dev->data.vnc.autoport) ||
(!dev->data.vnc.autoport &&
(olddev->data.vnc.port != dev->data.vnc.port))) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change port settings on vnc graphics"));
return -1;
}
if (STRNEQ_NULLABLE(olddev->data.vnc.listenAddr,
dev->data.vnc.listenAddr)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change listen address setting on vnc graphics"));
return -1;
}
if (STRNEQ_NULLABLE(olddev->data.vnc.keymap, dev->data.vnc.keymap)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change keymap setting on vnc graphics"));
return -1;
}
/* If a password lifetime was, or is set, or action if connected has
* changed, then we must always run, even if new password matches
* old password */
if (olddev->data.vnc.auth.expires ||
dev->data.vnc.auth.expires ||
olddev->data.vnc.auth.connected != dev->data.vnc.auth.connected ||
STRNEQ_NULLABLE(olddev->data.vnc.auth.passwd,
dev->data.vnc.auth.passwd)) {
VIR_DEBUG("Updating password on VNC server %p %p",
dev->data.vnc.auth.passwd, driver->vncPassword);
ret = qemuDomainChangeGraphicsPasswords(driver, vm,
VIR_DOMAIN_GRAPHICS_TYPE_VNC,
&dev->data.vnc.auth,
driver->vncPassword);
/* Steal the new dev's char * reference */
VIR_FREE(olddev->data.vnc.auth.passwd);
olddev->data.vnc.auth.passwd = dev->data.vnc.auth.passwd;
dev->data.vnc.auth.passwd = NULL;
olddev->data.vnc.auth.validTo = dev->data.vnc.auth.validTo;
olddev->data.vnc.auth.expires = dev->data.vnc.auth.expires;
olddev->data.vnc.auth.connected = dev->data.vnc.auth.connected;
} else {
ret = 0;
}
break;
case VIR_DOMAIN_GRAPHICS_TYPE_SPICE:
if ((olddev->data.spice.autoport != dev->data.spice.autoport) ||
(!dev->data.spice.autoport &&
(olddev->data.spice.port != dev->data.spice.port)) ||
(!dev->data.spice.autoport &&
(olddev->data.spice.tlsPort != dev->data.spice.tlsPort))) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change port settings on spice graphics"));
return -1;
}
if (STRNEQ_NULLABLE(olddev->data.spice.listenAddr,
dev->data.spice.listenAddr)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change listen address setting on spice graphics"));
return -1;
}
if (STRNEQ_NULLABLE(olddev->data.spice.keymap,
dev->data.spice.keymap)) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("cannot change keymap setting on spice graphics"));
return -1;
}
/* If a password lifetime was, or is set, then we must always run,
* even if new password matches old password */
if (olddev->data.spice.auth.expires ||
dev->data.spice.auth.expires ||
olddev->data.spice.auth.connected != dev->data.spice.auth.connected ||
STRNEQ_NULLABLE(olddev->data.spice.auth.passwd,
dev->data.spice.auth.passwd)) {
VIR_DEBUG("Updating password on SPICE server %p %p",
dev->data.spice.auth.passwd, driver->spicePassword);
ret = qemuDomainChangeGraphicsPasswords(driver, vm,
VIR_DOMAIN_GRAPHICS_TYPE_SPICE,
&dev->data.spice.auth,
driver->spicePassword);
/* Steal the new dev's char * reference */
VIR_FREE(olddev->data.spice.auth.passwd);
olddev->data.spice.auth.passwd = dev->data.spice.auth.passwd;
dev->data.spice.auth.passwd = NULL;
olddev->data.spice.auth.validTo = dev->data.spice.auth.validTo;
olddev->data.spice.auth.expires = dev->data.spice.auth.expires;
olddev->data.spice.auth.connected = dev->data.spice.auth.connected;
} else {
VIR_DEBUG("Not updating since password didn't change");
ret = 0;
}
break;
default:
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("unable to change config on '%s' graphics type"),
virDomainGraphicsTypeToString(dev->type));
break;
}
return ret;
}
static inline int qemuFindDisk(virDomainDefPtr def, const char *dst)
{
int i;
for (i = 0 ; i < def->ndisks ; i++) {
if (STREQ(def->disks[i]->dst, dst)) {
return i;
}
}
return -1;
}
static int qemuComparePCIDevice(virDomainDefPtr def ATTRIBUTE_UNUSED,
virDomainDeviceInfoPtr dev1,
void *opaque)
{
virDomainDeviceInfoPtr dev2 = opaque;
if (dev1->type != VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI ||
dev2->type != VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI)
return 0;
if (dev1->addr.pci.slot == dev2->addr.pci.slot &&
dev1->addr.pci.function != dev2->addr.pci.function)
return -1;
return 0;
}
static bool qemuIsMultiFunctionDevice(virDomainDefPtr def,
virDomainDeviceInfoPtr dev)
{
if (virDomainDeviceInfoIterate(def, qemuComparePCIDevice, dev) < 0)
return true;
return false;
}
int qemuDomainDetachPciDiskDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
int i, ret = -1;
virDomainDiskDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
virCgroupPtr cgroup = NULL;
char *drivestr = NULL;
i = qemuFindDisk(vm->def, dev->data.disk->dst);
if (i < 0) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("disk %s not found"), dev->data.disk->dst);
goto cleanup;
}
detach = vm->def->disks[i];
if (qemuIsMultiFunctionDevice(vm->def, &detach->info)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("cannot hot unplug multifunction PCI device: %s"),
dev->data.disk->dst);
goto cleanup;
}
if (qemuCgroupControllerActive(driver, VIR_CGROUP_CONTROLLER_DEVICES)) {
if (virCgroupForDomain(driver->cgroup, vm->def->name, &cgroup, 0) != 0) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("Unable to find cgroup for %s"),
vm->def->name);
goto cleanup;
}
}
if (!virDomainDeviceAddressIsValid(&detach->info,
VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI)) {
qemuReportError(VIR_ERR_OPERATION_FAILED, "%s",
_("device cannot be detached without a PCI address"));
goto cleanup;
}
/* build the actual drive id string as the disk->info.alias doesn't
* contain the QEMU_DRIVE_HOST_PREFIX that is passed to qemu */
if (virAsprintf(&drivestr, "%s%s",
QEMU_DRIVE_HOST_PREFIX, detach->info.alias) < 0) {
virReportOOMError();
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorDelDevice(priv->mon, detach->info.alias) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, detach, NULL, "detach", false);
goto cleanup;
}
} else {
if (qemuMonitorRemovePCIDevice(priv->mon,
&detach->info.addr.pci) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, detach, NULL, "detach", false);
goto cleanup;
}
}
/* disconnect guest from host device */
qemuMonitorDriveDel(priv->mon, drivestr);
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, detach, NULL, "detach", true);
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
detach->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on %s", dev->data.disk->src);
virDomainDiskRemove(vm->def, i);
virDomainDiskDefFree(detach);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, dev->data.disk) < 0)
VIR_WARN("Unable to restore security label on %s", dev->data.disk->src);
if (cgroup != NULL) {
if (qemuTeardownDiskCgroup(driver, vm, cgroup, dev->data.disk) < 0)
VIR_WARN("Failed to teardown cgroup for disk path %s",
NULLSTR(dev->data.disk->src));
}
if (virDomainLockDiskDetach(driver->lockManager, vm, dev->data.disk) < 0)
VIR_WARN("Unable to release lock on %s", dev->data.disk->src);
ret = 0;
cleanup:
VIR_FREE(drivestr);
return ret;
}
int qemuDomainDetachDiskDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
int i, ret = -1;
virDomainDiskDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
virCgroupPtr cgroup = NULL;
char *drivestr = NULL;
i = qemuFindDisk(vm->def, dev->data.disk->dst);
if (i < 0) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("disk %s not found"), dev->data.disk->dst);
goto cleanup;
}
if (!qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("Underlying qemu does not support %s disk removal"),
virDomainDiskBusTypeToString(dev->data.disk->bus));
goto cleanup;
}
detach = vm->def->disks[i];
if (qemuCgroupControllerActive(driver, VIR_CGROUP_CONTROLLER_DEVICES)) {
if (virCgroupForDomain(driver->cgroup, vm->def->name, &cgroup, 0) != 0) {
qemuReportError(VIR_ERR_INTERNAL_ERROR,
_("Unable to find cgroup for %s"),
vm->def->name);
goto cleanup;
}
}
/* build the actual drive id string as the disk->info.alias doesn't
* contain the QEMU_DRIVE_HOST_PREFIX that is passed to qemu */
if (virAsprintf(&drivestr, "%s%s",
QEMU_DRIVE_HOST_PREFIX, detach->info.alias) < 0) {
virReportOOMError();
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuMonitorDelDevice(priv->mon, detach->info.alias) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, detach, NULL, "detach", false);
goto cleanup;
}
/* disconnect guest from host device */
qemuMonitorDriveDel(priv->mon, drivestr);
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditDisk(vm, detach, NULL, "detach", true);
virDomainDiskRemove(vm->def, i);
virDomainDiskDefFree(detach);
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreImageLabel(driver->securityManager,
vm, dev->data.disk) < 0)
VIR_WARN("Unable to restore security label on %s", dev->data.disk->src);
if (cgroup != NULL) {
if (qemuTeardownDiskCgroup(driver, vm, cgroup, dev->data.disk) < 0)
VIR_WARN("Failed to teardown cgroup for disk path %s",
NULLSTR(dev->data.disk->src));
}
if (virDomainLockDiskDetach(driver->lockManager, vm, dev->data.disk) < 0)
VIR_WARN("Unable to release lock on disk %s", dev->data.disk->src);
ret = 0;
cleanup:
VIR_FREE(drivestr);
virCgroupFree(&cgroup);
return ret;
}
static bool qemuDomainDiskControllerIsBusy(virDomainObjPtr vm,
virDomainControllerDefPtr detach)
{
int i;
virDomainDiskDefPtr disk;
for (i = 0; i < vm->def->ndisks; i++) {
disk = vm->def->disks[i];
if (disk->info.type != VIR_DOMAIN_DEVICE_ADDRESS_TYPE_DRIVE)
/* the disk does not use disk controller */
continue;
/* check whether the disk uses this type controller */
if (disk->bus == VIR_DOMAIN_DISK_BUS_IDE &&
detach->type != VIR_DOMAIN_CONTROLLER_TYPE_IDE)
continue;
if (disk->bus == VIR_DOMAIN_DISK_BUS_FDC &&
detach->type != VIR_DOMAIN_CONTROLLER_TYPE_FDC)
continue;
if (disk->bus == VIR_DOMAIN_DISK_BUS_SCSI &&
detach->type != VIR_DOMAIN_CONTROLLER_TYPE_SCSI)
continue;
if (disk->info.addr.drive.controller == detach->idx)
return true;
}
return false;
}
static bool qemuDomainControllerIsBusy(virDomainObjPtr vm,
virDomainControllerDefPtr detach)
{
switch (detach->type) {
case VIR_DOMAIN_CONTROLLER_TYPE_IDE:
case VIR_DOMAIN_CONTROLLER_TYPE_FDC:
case VIR_DOMAIN_CONTROLLER_TYPE_SCSI:
return qemuDomainDiskControllerIsBusy(vm, detach);
case VIR_DOMAIN_CONTROLLER_TYPE_SATA:
case VIR_DOMAIN_CONTROLLER_TYPE_VIRTIO_SERIAL:
case VIR_DOMAIN_CONTROLLER_TYPE_CCID:
default:
/* libvirt does not support sata controller, and does not support to
* detach virtio and smart card controller.
*/
return true;
}
}
int qemuDomainDetachPciControllerDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
int i, ret = -1;
virDomainControllerDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
for (i = 0 ; i < vm->def->ncontrollers ; i++) {
if ((vm->def->controllers[i]->type == dev->data.controller->type) &&
(vm->def->controllers[i]->idx == dev->data.controller->idx)) {
detach = vm->def->controllers[i];
break;
}
}
if (!detach) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("disk controller %s:%d not found"),
virDomainControllerTypeToString(dev->data.controller->type),
dev->data.controller->idx);
goto cleanup;
}
if (!virDomainDeviceAddressIsValid(&detach->info,
VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI)) {
qemuReportError(VIR_ERR_OPERATION_FAILED, "%s",
_("device cannot be detached without a PCI address"));
goto cleanup;
}
if (qemuIsMultiFunctionDevice(vm->def, &detach->info)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("cannot hot unplug multifunction PCI device: %s"),
dev->data.disk->dst);
goto cleanup;
}
if (qemuDomainControllerIsBusy(vm, detach)) {
qemuReportError(VIR_ERR_OPERATION_FAILED, "%s",
_("device cannot be detached: device is busy"));
goto cleanup;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuAssignDeviceControllerAlias(detach) < 0)
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorDelDevice(priv->mon, detach->info.alias)) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
goto cleanup;
}
} else {
if (qemuMonitorRemovePCIDevice(priv->mon,
&detach->info.addr.pci) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
goto cleanup;
}
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
if (vm->def->ncontrollers > 1) {
memmove(vm->def->controllers + i,
vm->def->controllers + i + 1,
sizeof(*vm->def->controllers) *
(vm->def->ncontrollers - (i + 1)));
vm->def->ncontrollers--;
if (VIR_REALLOC_N(vm->def->controllers, vm->def->ncontrollers) < 0) {
/* ignore, harmless */
}
} else {
VIR_FREE(vm->def->controllers);
vm->def->ncontrollers = 0;
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
detach->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on controller");
virDomainControllerDefFree(detach);
ret = 0;
cleanup:
return ret;
}
int qemuDomainDetachNetDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
int i, ret = -1;
virDomainNetDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
int vlan;
char *hostnet_name = NULL;
for (i = 0 ; i < vm->def->nnets ; i++) {
virDomainNetDefPtr net = vm->def->nets[i];
if (!memcmp(net->mac, dev->data.net->mac, sizeof(net->mac))) {
detach = net;
break;
}
}
if (!detach) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("network device %02x:%02x:%02x:%02x:%02x:%02x not found"),
dev->data.net->mac[0], dev->data.net->mac[1],
dev->data.net->mac[2], dev->data.net->mac[3],
dev->data.net->mac[4], dev->data.net->mac[5]);
goto cleanup;
}
if (!virDomainDeviceAddressIsValid(&detach->info,
VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("device cannot be detached without a PCI address"));
goto cleanup;
}
if (qemuIsMultiFunctionDevice(vm->def, &detach->info)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("cannot hot unplug multifunction PCI device :%s"),
dev->data.disk->dst);
goto cleanup;
}
if ((vlan = qemuDomainNetVLAN(detach)) < 0) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("unable to determine original VLAN"));
goto cleanup;
}
if (virAsprintf(&hostnet_name, "host%s", detach->info.alias) < 0) {
virReportOOMError();
goto cleanup;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorDelDevice(priv->mon, detach->info.alias) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, detach, NULL, "detach", false);
goto cleanup;
}
} else {
if (qemuMonitorRemovePCIDevice(priv->mon,
&detach->info.addr.pci) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, detach, NULL, "detach", false);
goto cleanup;
}
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_NETDEV) &&
qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
if (qemuMonitorRemoveNetdev(priv->mon, hostnet_name) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, detach, NULL, "detach", false);
goto cleanup;
}
} else {
if (qemuMonitorRemoveHostNetwork(priv->mon, vlan, hostnet_name) < 0) {
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, detach, NULL, "detach", false);
goto cleanup;
}
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditNet(vm, detach, NULL, "detach", true);
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
detach->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on NIC");
virDomainConfNWFilterTeardown(detach);
#if WITH_MACVTAP
if (detach->type == VIR_DOMAIN_NET_TYPE_DIRECT) {
delMacvtap(detach->ifname, detach->mac, detach->data.direct.linkdev,
detach->data.direct.mode,
detach->data.direct.virtPortProfile,
driver->stateDir);
VIR_FREE(detach->ifname);
}
#endif
if ((driver->macFilter) && (detach->ifname != NULL)) {
if ((errno = networkDisallowMacOnPort(driver,
detach->ifname,
detach->mac))) {
virReportSystemError(errno,
_("failed to remove ebtables rule on '%s'"),
detach->ifname);
}
}
if (vm->def->nnets > 1) {
memmove(vm->def->nets + i,
vm->def->nets + i + 1,
sizeof(*vm->def->nets) *
(vm->def->nnets - (i + 1)));
vm->def->nnets--;
if (VIR_REALLOC_N(vm->def->nets, vm->def->nnets) < 0) {
/* ignore, harmless */
}
} else {
VIR_FREE(vm->def->nets);
vm->def->nnets = 0;
}
virDomainNetDefFree(detach);
ret = 0;
cleanup:
VIR_FREE(hostnet_name);
return ret;
}
int qemuDomainDetachHostPciDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
virDomainHostdevDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
int i, ret;
pciDevice *pci;
for (i = 0 ; i < vm->def->nhostdevs ; i++) {
if (vm->def->hostdevs[i]->mode != VIR_DOMAIN_HOSTDEV_MODE_SUBSYS ||
vm->def->hostdevs[i]->source.subsys.type != VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_PCI)
continue;
unsigned domain = vm->def->hostdevs[i]->source.subsys.u.pci.domain;
unsigned bus = vm->def->hostdevs[i]->source.subsys.u.pci.bus;
unsigned slot = vm->def->hostdevs[i]->source.subsys.u.pci.slot;
unsigned function = vm->def->hostdevs[i]->source.subsys.u.pci.function;
if (dev->data.hostdev->source.subsys.u.pci.domain == domain &&
dev->data.hostdev->source.subsys.u.pci.bus == bus &&
dev->data.hostdev->source.subsys.u.pci.slot == slot &&
dev->data.hostdev->source.subsys.u.pci.function == function) {
detach = vm->def->hostdevs[i];
break;
}
}
if (!detach) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("host pci device %.4x:%.2x:%.2x.%.1x not found"),
dev->data.hostdev->source.subsys.u.pci.domain,
dev->data.hostdev->source.subsys.u.pci.bus,
dev->data.hostdev->source.subsys.u.pci.slot,
dev->data.hostdev->source.subsys.u.pci.function);
return -1;
}
if (qemuIsMultiFunctionDevice(vm->def, &detach->info)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("cannot hot unplug multifunction PCI device: %s"),
dev->data.disk->dst);
return -1;
}
if (!virDomainDeviceAddressIsValid(&detach->info,
VIR_DOMAIN_DEVICE_ADDRESS_TYPE_PCI)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("device cannot be detached without a PCI address"));
return -1;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
ret = qemuMonitorDelDevice(priv->mon, detach->info.alias);
} else {
ret = qemuMonitorRemovePCIDevice(priv->mon, &detach->info.addr.pci);
}
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditHostdev(vm, detach, "detach", ret == 0);
if (ret < 0)
return -1;
pci = pciGetDevice(detach->source.subsys.u.pci.domain,
detach->source.subsys.u.pci.bus,
detach->source.subsys.u.pci.slot,
detach->source.subsys.u.pci.function);
if (!pci)
ret = -1;
else {
pciDeviceSetManaged(pci, detach->managed);
pciDeviceListDel(driver->activePciHostdevs, pci);
if (pciResetDevice(pci, driver->activePciHostdevs, NULL) < 0)
ret = -1;
qemuReattachPciDevice(pci, driver);
pciFreeDevice(pci);
}
if (qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE) &&
qemuDomainPCIAddressReleaseSlot(priv->pciaddrs,
detach->info.addr.pci.slot) < 0)
VIR_WARN("Unable to release PCI address on host device");
if (vm->def->nhostdevs > 1) {
memmove(vm->def->hostdevs + i,
vm->def->hostdevs + i + 1,
sizeof(*vm->def->hostdevs) *
(vm->def->nhostdevs - (i + 1)));
vm->def->nhostdevs--;
if (VIR_REALLOC_N(vm->def->hostdevs, vm->def->nhostdevs) < 0) {
/* ignore, harmless */
}
} else {
VIR_FREE(vm->def->hostdevs);
vm->def->nhostdevs = 0;
}
virDomainHostdevDefFree(detach);
return ret;
}
int qemuDomainDetachHostUsbDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
virDomainHostdevDefPtr detach = NULL;
qemuDomainObjPrivatePtr priv = vm->privateData;
int i, ret;
for (i = 0 ; i < vm->def->nhostdevs ; i++) {
if (vm->def->hostdevs[i]->mode != VIR_DOMAIN_HOSTDEV_MODE_SUBSYS ||
vm->def->hostdevs[i]->source.subsys.type != VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_USB)
continue;
unsigned bus = vm->def->hostdevs[i]->source.subsys.u.usb.bus;
unsigned device = vm->def->hostdevs[i]->source.subsys.u.usb.device;
unsigned product = vm->def->hostdevs[i]->source.subsys.u.usb.product;
unsigned vendor = vm->def->hostdevs[i]->source.subsys.u.usb.vendor;
if (dev->data.hostdev->source.subsys.u.usb.bus &&
dev->data.hostdev->source.subsys.u.usb.device) {
if (dev->data.hostdev->source.subsys.u.usb.bus == bus &&
dev->data.hostdev->source.subsys.u.usb.device == device) {
detach = vm->def->hostdevs[i];
break;
}
} else {
if (dev->data.hostdev->source.subsys.u.usb.product == product &&
dev->data.hostdev->source.subsys.u.usb.vendor == vendor) {
detach = vm->def->hostdevs[i];
break;
}
}
}
if (!detach) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
_("host usb device %03d.%03d not found"),
dev->data.hostdev->source.subsys.u.usb.bus,
dev->data.hostdev->source.subsys.u.usb.device);
return -1;
}
if (!detach->info.alias) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("device cannot be detached without a device alias"));
return -1;
}
if (!qemuCapsGet(priv->qemuCaps, QEMU_CAPS_DEVICE)) {
qemuReportError(VIR_ERR_OPERATION_FAILED,
"%s", _("device cannot be detached with this QEMU version"));
return -1;
}
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
ret = qemuMonitorDelDevice(priv->mon, detach->info.alias);
qemuDomainObjExitMonitorWithDriver(driver, vm);
virDomainAuditHostdev(vm, detach, "detach", ret == 0);
if (ret < 0)
return -1;
if (vm->def->nhostdevs > 1) {
memmove(vm->def->hostdevs + i,
vm->def->hostdevs + i + 1,
sizeof(*vm->def->hostdevs) *
(vm->def->nhostdevs - (i + 1)));
vm->def->nhostdevs--;
if (VIR_REALLOC_N(vm->def->hostdevs, vm->def->nhostdevs) < 0) {
/* ignore, harmless */
}
} else {
VIR_FREE(vm->def->hostdevs);
vm->def->nhostdevs = 0;
}
virDomainHostdevDefFree(detach);
return ret;
}
int qemuDomainDetachHostDevice(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainDeviceDefPtr dev)
{
virDomainHostdevDefPtr hostdev = dev->data.hostdev;
int ret;
if (hostdev->mode != VIR_DOMAIN_HOSTDEV_MODE_SUBSYS) {
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("hostdev mode '%s' not supported"),
virDomainHostdevModeTypeToString(hostdev->mode));
return -1;
}
switch (hostdev->source.subsys.type) {
case VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_PCI:
ret = qemuDomainDetachHostPciDevice(driver, vm, dev);
break;
case VIR_DOMAIN_HOSTDEV_SUBSYS_TYPE_USB:
ret = qemuDomainDetachHostUsbDevice(driver, vm, dev);
break;
default:
qemuReportError(VIR_ERR_CONFIG_UNSUPPORTED,
_("hostdev subsys type '%s' not supported"),
virDomainHostdevSubsysTypeToString(hostdev->source.subsys.type));
return -1;
}
Refactor the security drivers to simplify usage The current security driver usage requires horrible code like if (driver->securityDriver && driver->securityDriver->domainSetSecurityHostdevLabel && driver->securityDriver->domainSetSecurityHostdevLabel(driver->securityDriver, vm, hostdev) < 0) This pair of checks for NULL clutters up the code, making the driver calls 2 lines longer than they really need to be. The goal of the patchset is to change the calling convention to simply if (virSecurityManagerSetHostdevLabel(driver->securityDriver, vm, hostdev) < 0) The first check for 'driver->securityDriver' being NULL is removed by introducing a 'no op' security driver that will always be present if no real driver is enabled. This guarentees driver->securityDriver != NULL. The second check for 'driver->securityDriver->domainSetSecurityHostdevLabel' being non-NULL is hidden in a new abstraction called virSecurityManager. This separates the driver callbacks, from main internal API. The addition of a virSecurityManager object, that is separate from the virSecurityDriver struct also allows for security drivers to carry state / configuration information directly. Thus the DAC/Stack drivers from src/qemu which used to pull config from 'struct qemud_driver' can now be moved into the 'src/security' directory and store their config directly. * src/qemu/qemu_conf.h, src/qemu/qemu_driver.c: Update to use new virSecurityManager APIs * src/qemu/qemu_security_dac.c, src/qemu/qemu_security_dac.h src/qemu/qemu_security_stacked.c, src/qemu/qemu_security_stacked.h: Move into src/security directory * src/security/security_stack.c, src/security/security_stack.h, src/security/security_dac.c, src/security/security_dac.h: Generic versions of previous QEMU specific drivers * src/security/security_apparmor.c, src/security/security_apparmor.h, src/security/security_driver.c, src/security/security_driver.h, src/security/security_selinux.c, src/security/security_selinux.h: Update to take virSecurityManagerPtr object as the first param in all callbacks * src/security/security_nop.c, src/security/security_nop.h: Stub implementation of all security driver APIs. * src/security/security_manager.h, src/security/security_manager.c: New internal API for invoking security drivers * src/libvirt.c: Add missing debug for security APIs
2010-11-17 20:26:30 +00:00
if (virSecurityManagerRestoreHostdevLabel(driver->securityManager,
vm, dev->data.hostdev) < 0)
VIR_WARN("Failed to restore host device labelling");
return ret;
}
int
qemuDomainChangeGraphicsPasswords(struct qemud_driver *driver,
virDomainObjPtr vm,
int type,
virDomainGraphicsAuthDefPtr auth,
const char *defaultPasswd)
{
qemuDomainObjPrivatePtr priv = vm->privateData;
time_t now = time(NULL);
char expire_time [64];
const char *connected = NULL;
int ret;
if (!auth->passwd && !driver->vncPassword)
return 0;
if (auth->connected)
connected = virDomainGraphicsAuthConnectedTypeToString(auth->connected);
qemu: Allow all query commands to be run during long jobs Query commands are safe to be called during long running jobs (such as migration). This patch makes them all work without the need to special-case every single one of them. The patch introduces new job.asyncCond condition and associated job.asyncJob which are dedicated to asynchronous (from qemu monitor point of view) jobs that can take arbitrarily long time to finish while qemu monitor is still usable for other commands. The existing job.active (and job.cond condition) is used all other synchronous jobs (including the commands run during async job). Locking schema is changed to use these two conditions. While asyncJob is active, only allowed set of synchronous jobs is allowed (the set can be different according to a particular asyncJob) so any method that communicates to qemu monitor needs to check if it is allowed to be executed during current asyncJob (if any). Once the check passes, the method needs to normally acquire job.cond to ensure no other command is running. Since domain object lock is released during that time, asyncJob could have been started in the meantime so the method needs to recheck the first condition. Then, normal jobs set job.active and asynchronous jobs set job.asyncJob and optionally change the list of allowed job groups. Since asynchronous jobs only set job.asyncJob, other allowed commands can still be run when domain object is unlocked (when communicating to remote libvirtd or sleeping). To protect its own internal synchronous commands, the asynchronous job needs to start a special nested job before entering qemu monitor. The nested job doesn't check asyncJob, it only acquires job.cond and sets job.active to block other jobs.
2011-06-30 09:23:50 +00:00
ignore_value(qemuDomainObjEnterMonitorWithDriver(driver, vm));
ret = qemuMonitorSetPassword(priv->mon,
type,
auth->passwd ? auth->passwd : defaultPasswd,
connected);
if (ret == -2) {
if (type != VIR_DOMAIN_GRAPHICS_TYPE_VNC) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Graphics password only supported for VNC"));
ret = -1;
} else {
ret = qemuMonitorSetVNCPassword(priv->mon,
auth->passwd ? auth->passwd : defaultPasswd);
}
}
if (ret != 0)
goto cleanup;
if (auth->expires) {
time_t lifetime = auth->validTo - now;
if (lifetime <= 0)
snprintf(expire_time, sizeof (expire_time), "now");
else
snprintf(expire_time, sizeof (expire_time), "%lu", (long unsigned)auth->validTo);
} else {
snprintf(expire_time, sizeof (expire_time), "never");
}
ret = qemuMonitorExpirePassword(priv->mon, type, expire_time);
if (ret == -2) {
/* XXX we could fake this with a timer */
if (auth->expires) {
qemuReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("Expiry of passwords is not supported"));
ret = -1;
} else {
ret = 0;
}
}
cleanup:
qemuDomainObjExitMonitorWithDriver(driver, vm);
return ret;
}
int qemuDomainAttachLease(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainLeaseDefPtr lease)
{
if (virDomainLeaseInsertPreAlloc(vm->def) < 0)
return -1;
if (virDomainLockLeaseAttach(driver->lockManager, vm, lease) < 0) {
virDomainLeaseInsertPreAlloced(vm->def, NULL);
return -1;
}
virDomainLeaseInsertPreAlloced(vm->def, lease);
return 0;
}
int qemuDomainDetachLease(struct qemud_driver *driver,
virDomainObjPtr vm,
virDomainLeaseDefPtr lease)
{
int i;
if ((i = virDomainLeaseIndex(vm->def, lease)) < 0) {
qemuReportError(VIR_ERR_INVALID_ARG,
_("Lease %s in lockspace %s does not exist"),
lease->key, NULLSTR(lease->lockspace));
return -1;
}
if (virDomainLockLeaseDetach(driver->lockManager, vm, lease) < 0)
return -1;
virDomainLeaseRemoveAt(vm->def, i);
return 0;
}