* daemon/remote.c: Server side dispatcher
* daemon/remote_dispatch_args.h, daemon/remote_dispatch_prototypes.h,
daemon/remote_dispatch_ret.h, daemon/remote_dispatch_table.h: Update
with new API
* src/remote/remote_driver.c: Client side dispatcher
* src/remote/remote_protocol.c, src/remote/remote_protocol.h: Update
* src/remote/remote_protocol.x: Define new wire protocol
While running libvirtd under valgrind and doing some
snapshot testing I noticed that we would always leak a
connection reference. The problem was actually that we
were leaking a domain reference in the libvirtd remote
snapshot code, which was in turn causing a leaked
connection reference. Fix the situation by explicitly
taking and dropping a domain reference where we need it.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
The user probably doesn't care what the gai error numbers are, as
much as what the failed conversion IP address was.
* src/remote/remote_driver.c (addrToString): Mention which address
could not be converted.
* daemon/remote.c (addrToString): Likewise.
* src/remote/remote_protocol.x src/remote/remote_protocol.h
src/remote/remote_protocol.c src/remote/remote_driver.c: add the entry
points in the remote driver
* daemon/remote.c daemon/remote_dispatch_args.h
daemon/remote_dispatch_prototypes.h daemon/remote_dispatch_table.h:
and implement the daemon counterpart
This patch adds the definition of the wire format for RPC calls
and implementation of the RPC client & server code
Signed-off-by: Stefan Berger <stefanb@us.ibm.com>
This defines the wire format for the new virDomainUpdateDeviceFlags()
API, and implements the server & client side of the marshalling code.
* daemon/remote.c: Server side dispatch for virDomainUpdateDeviceFlags
* src/remote/remote_driver.c: Client side serialization for
virDomainUpdateDeviceFlags
* src/remote/remote_protocol.x: Define wire format for
virDomainUpdateDeviceFlags
* daemon/remote_dispatch_args.h, daemon/remote_dispatch_prototypes.h,
daemon/remote_dispatch_table.h, src/remote/remote_protocol.c,
src/remote/remote_protocol.h: Re-generate code
This introduces a new event type
VIR_DOMAIN_EVENT_ID_GRAPHICS
The same event can be emitted in 3 scenarios
typedef enum {
VIR_DOMAIN_EVENT_GRAPHICS_CONNECT = 0,
VIR_DOMAIN_EVENT_GRAPHICS_INITIALIZE,
VIR_DOMAIN_EVENT_GRAPHICS_DISCONNECT,
} virDomainEventGraphicsPhase;
Connect/disconnect are triggered at socket accept/close.
The initialize phase is immediately after the protocol
setup and authentication has completed. ie when the
client is authorized and about to start interacting with
the graphical desktop
This event comes with *a lot* of potential information
- IP address, port & address family of client
- IP address, port & address family of server
- Authentication scheme (arbitrary string)
- Authenticated subject identity. A subject may have
multiple identities with some authentication schemes.
For example, vencrypt+sasl results in a x509dname
and saslUsername identities.
This results in a very complicated callback :-(
typedef enum {
VIR_DOMAIN_EVENT_GRAPHICS_ADDRESS_IPV4,
VIR_DOMAIN_EVENT_GRAPHICS_ADDRESS_IPV6,
} virDomainEventGraphicsAddressType;
struct _virDomainEventGraphicsAddress {
int family;
const char *node;
const char *service;
};
typedef struct _virDomainEventGraphicsAddress virDomainEventGraphicsAddress;
typedef virDomainEventGraphicsAddress *virDomainEventGraphicsAddressPtr;
struct _virDomainEventGraphicsSubject {
int nidentity;
struct {
const char *type;
const char *name;
} *identities;
};
typedef struct _virDomainEventGraphicsSubject virDomainEventGraphicsSubject;
typedef virDomainEventGraphicsSubject *virDomainEventGraphicsSubjectPtr;
typedef void (*virConnectDomainEventGraphicsCallback)(virConnectPtr conn,
virDomainPtr dom,
int phase,
virDomainEventGraphicsAddressPtr local,
virDomainEventGraphicsAddressPtr remote,
const char *authScheme,
virDomainEventGraphicsSubjectPtr subject,
void *opaque);
The wire protocol is similarly complex
struct remote_domain_event_graphics_address {
int family;
remote_nonnull_string node;
remote_nonnull_string service;
};
const REMOTE_DOMAIN_EVENT_GRAPHICS_IDENTITY_MAX = 20;
struct remote_domain_event_graphics_identity {
remote_nonnull_string type;
remote_nonnull_string name;
};
struct remote_domain_event_graphics_msg {
remote_nonnull_domain dom;
int phase;
remote_domain_event_graphics_address local;
remote_domain_event_graphics_address remote;
remote_nonnull_string authScheme;
remote_domain_event_graphics_identity subject<REMOTE_DOMAIN_EVENT_GRAPHICS_IDENTITY_MAX>;
};
This is currently implemented in QEMU for the VNC graphics
protocol, but designed to be usable with SPICE graphics in
the future too.
* daemon/remote.c: Dispatch graphics events to client
* examples/domain-events/events-c/event-test.c: Watch for
graphics events
* include/libvirt/libvirt.h.in: Define new graphics event ID
and callback signature
* src/conf/domain_event.c, src/conf/domain_event.h,
src/libvirt_private.syms: Extend API to handle graphics events
* src/qemu/qemu_driver.c: Connect to the QEMU monitor event
for VNC events and emit a libvirt graphics event
* src/remote/remote_driver.c: Receive and dispatch graphics
events to application
* src/remote/remote_protocol.x: Wire protocol definition for
graphics events
* src/qemu/qemu_monitor.c, src/qemu/qemu_monitor.h,
src/qemu/qemu_monitor_json.c: Watch for VNC_CONNECTED,
VNC_INITIALIZED & VNC_DISCONNETED events from QEMU monitor
This introduces a new event type
VIR_DOMAIN_EVENT_ID_IO_ERROR
This event includes the action that is about to be taken
as a result of the watchdog triggering
typedef enum {
VIR_DOMAIN_EVENT_IO_ERROR_NONE = 0,
VIR_DOMAIN_EVENT_IO_ERROR_PAUSE,
VIR_DOMAIN_EVENT_IO_ERROR_REPORT,
} virDomainEventIOErrorAction;
In addition it has the source path of the disk that had the
error and its unique device alias. It does not include the
target device name (/dev/sda), since this would preclude
triggering IO errors from other file backed devices (eg
serial ports connected to a file)
Thus there is a new callback definition for this event type
typedef void (*virConnectDomainEventIOErrorCallback)(virConnectPtr conn,
virDomainPtr dom,
const char *srcPath,
const char *devAlias,
int action,
void *opaque);
This is currently wired up to the QEMU block IO error events
* daemon/remote.c: Dispatch IO error events to client
* examples/domain-events/events-c/event-test.c: Watch for
IO error events
* include/libvirt/libvirt.h.in: Define new IO error event ID
and callback signature
* src/conf/domain_event.c, src/conf/domain_event.h,
src/libvirt_private.syms: Extend API to handle IO error events
* src/qemu/qemu_driver.c: Connect to the QEMU monitor event
for block IO errors and emit a libvirt IO error event
* src/remote/remote_driver.c: Receive and dispatch IO error
events to application
* src/remote/remote_protocol.x: Wire protocol definition for
IO error events
* src/qemu/qemu_monitor.c, src/qemu/qemu_monitor.h,
src/qemu/qemu_monitor_json.c: Watch for BLOCK_IO_ERROR event
from QEMU monitor
This introduces a new event type
VIR_DOMAIN_EVENT_ID_WATCHDOG
This event includes the action that is about to be taken
as a result of the watchdog triggering
typedef enum {
VIR_DOMAIN_EVENT_WATCHDOG_NONE = 0,
VIR_DOMAIN_EVENT_WATCHDOG_PAUSE,
VIR_DOMAIN_EVENT_WATCHDOG_RESET,
VIR_DOMAIN_EVENT_WATCHDOG_POWEROFF,
VIR_DOMAIN_EVENT_WATCHDOG_SHUTDOWN,
VIR_DOMAIN_EVENT_WATCHDOG_DEBUG,
} virDomainEventWatchdogAction;
Thus there is a new callback definition for this event type
typedef void (*virConnectDomainEventWatchdogCallback)(virConnectPtr conn,
virDomainPtr dom,
int action,
void *opaque);
* daemon/remote.c: Dispatch watchdog events to client
* examples/domain-events/events-c/event-test.c: Watch for
watchdog events
* include/libvirt/libvirt.h.in: Define new watchdg event ID
and callback signature
* src/conf/domain_event.c, src/conf/domain_event.h,
src/libvirt_private.syms: Extend API to handle watchdog events
* src/qemu/qemu_driver.c: Connect to the QEMU monitor event
for watchdogs and emit a libvirt watchdog event
* src/remote/remote_driver.c: Receive and dispatch watchdog
events to application
* src/remote/remote_protocol.x: Wire protocol definition for
watchdog events
* src/qemu/qemu_monitor.c, src/qemu/qemu_monitor.h,
src/qemu/qemu_monitor_json.c: Watch for WATCHDOG event
from QEMU monitor
This introduces a new event type
VIR_DOMAIN_EVENT_ID_RTC_CHANGE
This event includes the new UTC offset measured in seconds.
Thus there is a new callback definition for this event type
typedef void (*virConnectDomainEventRTCChangeCallback)(virConnectPtr conn,
virDomainPtr dom,
long long utcoffset,
void *opaque);
If the guest XML configuration for the <clock> is set to
offset='variable', then the XML will automatically be
updated with the new UTC offset value. This ensures that
during migration/save/restore the new offset is preserved.
* daemon/remote.c: Dispatch RTC change events to client
* examples/domain-events/events-c/event-test.c: Watch for
RTC change events
* include/libvirt/libvirt.h.in: Define new RTC change event ID
and callback signature
* src/conf/domain_event.c, src/conf/domain_event.h,
src/libvirt_private.syms: Extend API to handle RTC change events
* src/qemu/qemu_driver.c: Connect to the QEMU monitor event
for RTC changes and emit a libvirt RTC change event
* src/remote/remote_driver.c: Receive and dispatch RTC change
events to application
* src/remote/remote_protocol.x: Wire protocol definition for
RTC change events
* src/qemu/qemu_monitor.c, src/qemu/qemu_monitor.h,
src/qemu/qemu_monitor_json.c: Watch for RTC_CHANGE event
from QEMU monitor
The reboot event is not a normal lifecycle event, since the
virtual machine on the host does not change state. Rather the
guest OS is resetting the virtual CPUs. ie, the QEMU process
does not restart. Thus, this does not belong in the current
lifecycle events callback.
This introduces a new event type
VIR_DOMAIN_EVENT_ID_REBOOT
It takes no parameters, besides the virDomainPtr, so it can
use the generic callback signature.
* daemon/remote.c: Dispatch reboot events to client
* examples/domain-events/events-c/event-test.c: Watch for
reboot events
* include/libvirt/libvirt.h.in: Define new reboot event ID
* src/conf/domain_event.c, src/conf/domain_event.h,
src/libvirt_private.syms: Extend API to handle reboot events
* src/qemu/qemu_driver.c: Connect to the QEMU monitor event
for reboots and emit a libvirt reboot event
* src/remote/remote_driver.c: Receive and dispatch reboot
events to application
* src/remote/remote_protocol.x: Wire protocol definition for
reboot events
To avoid confusion, rename the current REMOTE_PROC_DOMAIN_EVENT
message to REMOTE_PROC_DOMAIN_EVENT_LIFECYCLE. This does not
cause ABI problems, since the names are only relevant at the source
code level. On the wire they encoding is a plain integer whose
value does not change
* src/remote/remote_protocol.x: Rename REMOTE_PROC_DOMAIN_EVENT
to REMOTE_PROC_DOMAIN_EVENT_LIFECYCLE.
* daemon/remote.c, src/remote/remote_driver.c: Update code for
renamed event
This wires up the remote driver to handle the new events APIs.
The public API allows an application to request a callback filters
events to a specific domain object, and register multiple callbacks
for the same event type. On the wire there are two strategies for
this
- Register multiple callbacks with the remote daemon, each
with filtering as needed
- Register only one callback per event type, with no filtering
Both approaches have potential inefficiency. In the first scheme,
the same event gets sent over the wire many times if multiple
callbacks are registered. With the second scheme, unneccessary
events get sent over the wire if a per-domain filter is set on
the client. The second scheme is far easier to implement though,
so this patch takes that approach.
* daemon/dispatch.h: Don't export remoteRelayDomainEvent since it
is no longer needed for unregistering callbacks, instead the
unique callback ID is used
* daemon/libvirtd.c, daemon/libvirtd.h: Track and unregister
callbacks based on callback ID, instead of function pointer
* daemon/remote.c: Switch over to using virConnectDomainEventRegisterAny
instead of legacy virConnectDomainEventRegister function. Refactor
remoteDispatchDomainEventSend() to cope with arbitrary event types
* src/driver.h, src/driver.c: Move verify() call into source file
instead of header, to avoid polluting the global namespace with
the verify function name
* src/remote/remote_driver.c: Implement new APIs for event
registration. Refactor processCallDispatchMessage() to cope
with arbitrary incoming event types. Merge remoteDomainQueueEvent()
into processCallDispatchMessage() to avoid duplication of code.
Rename remoteDomainReadEvent() to remoteDomainReadEventLifecycle()
* src/remote/remote_protocol.x: Define wire format for the new
virConnectDomainEventRegisterAny and virConnectDomainEventDeregisterAny
functions
This defines the wire protocol for the new API
* src/remote/remote_protocol.x: Wire protocol definition
* src/remote/remote_driver.c,daemon/remote.c: Client and server
side implementation
* daemon/remote_dispatch_args.h, daemon/remote_dispatch_prototypes.h,
daemon/remote_dispatch_table.h, src/remote/remote_protocol.c,
src/remote/remote_protocol.h: Re-generate from remote_protocol.x
* src/remote/remote_protocol.x: Define wire protocol format
for virDomainGetJobInfo API
* src/remote/remote_driver.c, daemon/remote.c: Implement client
and server marshalling code for virDomainGetJobInfo()
* daemon/remote_dispatch_args.h, daemon/remote_dispatch_prototypes.h
daemon/remote_dispatch_ret.h, daemon/remote_dispatch_table.h,
src/remote/remote_protocol.c, src/remote/remote_protocol.h: Rebuild
files from src/remote/remote_protocol.x
I noticed some debug messages are printed with an empty lines after
them. This patch removes these empty lines from all invocations of the
following macros:
VIR_DEBUG
VIR_DEBUG0
VIR_ERROR
VIR_ERROR0
VIR_INFO
VIR_WARN
VIR_WARN0
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
The daemon will attempt to unregister domain events on client disconnect,
even if no events were ever registered. This raises an unneeded error.
Track in the qemu_client structure if events have been registered, and
check this when performing cleanup.
Use a dynamically sized xdr_array to pass memory stats on the wire. This
supports the addition of future memory stats and reduces the message size
since only supported statistics are returned.
* src/remote/remote_protocol.x: provide defines for the new entry point
* src/remote/remote_driver.c daemon/remote.c: implement the client and
server side
* daemon/remote_dispatch_args.h daemon/remote_dispatch_prototypes.h
daemon/remote_dispatch_ret.h daemon/remote_dispatch_table.h
src/remote/remote_protocol.c src/remote/remote_protocol.h: generated
stubs
* src/remote/remote_protocol.x: update with new entry point
* daemon/remote.c: add the new server dispatcher
* daemon/remote_dispatch_args.h daemon/remote_dispatch_prototypes.h
daemon/remote_dispatch_ret.h daemon/remote_dispatch_table.h
src/remote/remote_protocol.c src/remote/remote_protocol.h: regenerated
There is currently no way to determine the libvirt version of a remote
libvirtd we are connected to. This is a useful piece of data to enable
feature detection.
Since virMigratePrepareTunnel() is used for migration over the
native libvirt connection, there is never any need to pass the
target URI to this method.
* daemon/remote.c, src/driver.h, src/libvirt.c, src/libvirt_internal.h,
src/qemu/qemu_driver.c, src/remote/remote_driver.c,
src/remote/remote_protocol.c, src/remote/remote_protocol.h,
src/remote/remote_protocol.x: Remove 'uri_in' parameter from
virMigratePrepareTunnel() method
The code which updated the message length after writing the
payload wrote the updated length word in the wrong place since
the XDR object was given a buffer pointing to the start of the
header payload, rather than message start.
* daemon/remote.c: Fix updating of event message length so that
we actually send the payload, not just the header
Implementation of tunnelled migration, using a Unix Domain Socket
on the qemu backend. Note that this requires very new versions of
qemu (0.10.7 at least) in order to get the appropriate bugfixes.
Signed-off-by: Chris Lalancette <clalance@redhat.com>
Add the virStrncpy function, which takes a dst string, source string,
the number of bytes to copy and the number of bytes available in the
dest string. If the source string is too large to fit into the
destination string, including the \0 byte, then no data is copied and
the function returns NULL. Otherwise, this function copies n bytes
from source into dst, including the \0, and returns a pointer to the
dst string. This function is intended to replace all unsafe uses
of strncpy in the code base, since strncpy does *not* guarantee that
the buffer terminates with a \0.
Signed-off-by: Chris Lalancette <clalance@redhat.com>