mirror of
https://gitlab.com/libvirt/libvirt.git
synced 2024-11-02 11:21:12 +00:00
3c83df679e
Currently, if there's no hard memory limit defined for a domain, libvirt tries to calculate one, based on domain definition and magic equation and set it upon the domain startup. The rationale behind was, if there's a memory leak or exploit in qemu, we should prevent the host system trashing. However, the equation was too tightening, as it didn't reflect what the kernel counts into the memory used by a process. Since many hosts do have a swap, nobody hasn't noticed anything, because if hard memory limit is reached, process can continue allocating memory on a swap. However, if there is no swap on the host, the process gets killed by OOM killer. In our case, the qemu process it is. To prevent this, we need to relax the hard RSS limit. Moreover, we should reflect more precisely the kernel way of accounting the memory for process. That is, even the kernel caches are counted within the memory used by a process (within cgroups at least). Hence the magic equation has to be changed: limit = 1.5 * (domain memory + total video memory) + (32MB for cache per each disk) + 200MB |
||
---|---|---|
.. | ||
conf | ||
cpu | ||
esx | ||
hyperv | ||
interface | ||
libxl | ||
locking | ||
lxc | ||
network | ||
node_device | ||
nwfilter | ||
openvz | ||
parallels | ||
phyp | ||
qemu | ||
remote | ||
rpc | ||
secret | ||
security | ||
storage | ||
test | ||
uml | ||
util | ||
vbox | ||
vmware | ||
vmx | ||
xen | ||
xenapi | ||
xenxs | ||
check-symfile.pl | ||
check-symsorting.pl | ||
datatypes.c | ||
datatypes.h | ||
driver.c | ||
driver.h | ||
dtrace2systemtap.pl | ||
fdstream.c | ||
fdstream.h | ||
gnutls_1_0_compat.h | ||
internal.h | ||
libvirt_atomic.syms | ||
libvirt_daemon.syms | ||
libvirt_driver_modules.syms | ||
libvirt_esx.syms | ||
libvirt_internal.h | ||
libvirt_libssh2.syms | ||
libvirt_linux.syms | ||
libvirt_openvz.syms | ||
libvirt_private.syms | ||
libvirt_probes.d | ||
libvirt_public.syms | ||
libvirt_qemu_probes.d | ||
libvirt_qemu.syms | ||
libvirt_sasl.syms | ||
libvirt_vmx.syms | ||
libvirt_xenxs.syms | ||
libvirt-qemu.c | ||
libvirt.c | ||
libvirt.conf | ||
Makefile.am | ||
nodeinfo.c | ||
nodeinfo.h | ||
qemu_protocol-structs | ||
README | ||
remote_protocol-structs | ||
virkeepaliveprotocol-structs | ||
virnetprotocol-structs |
libvirt library code README =========================== The directory provides the bulk of the libvirt codebase. Everything except for the libvirtd daemon and client tools. The build uses a large number of libtool convenience libraries - one for each child directory, and then links them together for the final libvirt.so, although some bits get linked directly to libvirtd daemon instead. The files directly in this directory are supporting the public API entry points & data structures. There are two core shared modules to be aware of: * util/ - a collection of shared APIs that can be used by any code. This directory is always in the include path for all things built * conf/ - APIs for parsing / manipulating all the official XML files used by the public API. This directory is only in the include path for driver implementation modules * vmx/ - VMware VMX config handling (used by esx/ and vmware/) Then there are the hypervisor implementations: * esx/ - VMware ESX and GSX support using vSphere API over SOAP * hyperv/ - Microsoft Hyper-V support using WinRM * lxc/ - Linux Native Containers * openvz/ - OpenVZ containers using cli tools * phyp/ - IBM Power Hypervisor using CLI tools over SSH * qemu/ - QEMU / KVM using qemu CLI/monitor * remote/ - Generic libvirt native RPC client * test/ - A "mock" driver for testing * uml/ - User Mode Linux * vbox/ - Virtual Box using native API * vmware/ - VMware Workstation and Player using the vmrun tool * xen/ - Xen using hypercalls, XenD SEXPR & XenStore * xenapi/ - Xen using libxenserver Finally some secondary drivers that are shared for several HVs. Currently these are used by LXC, OpenVZ, QEMU, UML and Xen drivers. The ESX, Hyper-V, Power Hypervisor, Remote, Test & VirtualBox drivers all implement the secondary drivers directly * cpu/ - CPU feature management * interface/ - Host network interface management * network/ - Virtual NAT networking * nwfilter/ - Network traffic filtering rules * node_device/ - Host device enumeration * secret/ - Secret management * security/ - Mandatory access control drivers * storage/ - Storage management drivers Since both the hypervisor and secondary drivers can be built as dlopen()able modules, it is *FORBIDDEN* to have build dependencies between these directories. Drivers are only allowed to depend on the public API, and the internal APIs in the util/ and conf/ directories