mirror of
https://gitlab.com/libvirt/libvirt.git
synced 2024-12-27 16:15:23 +00:00
70d15c9ac6
For machinetypes with a pci-root bus (all legacy PCI), libvirt will make a "fake" reservation for one extra slot prior to assigning addresses to unaddressed PCI endpoint devices in the domain. This will trigger auto-adding of a pci-bridge for the final device to be assigned an address *if that device would have otherwise instead been the last device on the last available pci-bridge*; thus it assures that there will always be at least one slot left open in the domain's bus topology for expansion (which is important both for hotplug (since a new pci-bridge can't be added while the guest is running) as well as for offline additions to the config (since adding a new device might otherwise in some cases require re-addressing existing devices, which we want to avoid)). It's important to note that for the above case (legacy PCI), we must check for the special case of all slots on all buses being occupied *prior to assigning any addresses*, and avoid attempting to reserve the extra address in that case, because there is no free address in the existing topology, so no place to auto-add a pci-bridge for expansion (i.e. it would always fail anyway). Since that condition can only be reached by manual intervention, this is acceptable. For machinetypes with pcie-root (Q35, aarch64 virt), libvirt's methodology for automatically expanding the bus topology is different - pcie-root-ports are plugged into slots (soon to be functions) of pcie-root as needed, and the new endpoint devices are assigned to the single slot in each pcie-root-port. This is done so that the devices are, by default, hotpluggable (the slots of pcie-root don't support hotplug, but the single slot of the pcie-root-port does). Since pcie-root-ports can only be plugged into pcie-root, and we don't auto-assign endpoint devices to the pcie-root slots, this means topology expansion doesn't compete with endpoint devices for slots, so we don't need to worry about checking for all "useful" slots being free *prior* to assigning addresses to new endpoint devices - as a matter of fact, if we attempt to reserve the open slots before the used slots, it can lead to errors. Instead this patch just reserves one slot for a "future potential" PCIe device after doing the assignment for actual devices, but only if the only PCI controller defined prior to starting address assignment was pcie-root, and only if we auto-added at least one PCI controller during address assignment. This assures two things: 1) that reserving the open slots will only be done when the domain is initially defined, never at any time after, and 2) that if the user understands enough about PCI controllers that they are adding them manually, that we don't mess up their plan by adding extras - if they know enough to add one pcie-root-port, or to manually assign addresses such that no pcie-root-ports are needed, they know enough to add extra pcie-root-ports if they want them (this could be called the "libguestfs clause", since libguestfs needs to be able to create domains with as few devices/controllers as possible). This is set to reserve a single free port for now, but could be increased in the future if public sentiment goes in that direction (it's easy to increase later, but essentially impossible to decrease) |
||
---|---|---|
.. | ||
access | ||
admin | ||
bhyve | ||
conf | ||
cpu | ||
esx | ||
hyperv | ||
interface | ||
libxl | ||
locking | ||
logging | ||
lxc | ||
network | ||
node_device | ||
nwfilter | ||
openvz | ||
phyp | ||
qemu | ||
remote | ||
rpc | ||
secret | ||
security | ||
storage | ||
test | ||
uml | ||
util | ||
vbox | ||
vmware | ||
vmx | ||
vz | ||
xen | ||
xenapi | ||
xenconfig | ||
admin_protocol-structs | ||
check-aclperms.pl | ||
check-aclrules.pl | ||
check-driverimpls.pl | ||
check-drivername.pl | ||
check-symfile.pl | ||
check-symsorting.pl | ||
datatypes.c | ||
datatypes.h | ||
driver-hypervisor.h | ||
driver-interface.h | ||
driver-network.h | ||
driver-nodedev.h | ||
driver-nwfilter.h | ||
driver-secret.h | ||
driver-state.h | ||
driver-storage.h | ||
driver-stream.h | ||
driver.c | ||
driver.h | ||
dtrace2systemtap.pl | ||
fdstream.c | ||
fdstream.h | ||
internal.h | ||
libvirt_admin_private.syms | ||
libvirt_admin_public.syms | ||
libvirt_atomic.syms | ||
libvirt_driver_modules.syms | ||
libvirt_esx.syms | ||
libvirt_gnutls.syms | ||
libvirt_internal.h | ||
libvirt_libssh2.syms | ||
libvirt_linux.syms | ||
libvirt_lxc.syms | ||
libvirt_openvz.syms | ||
libvirt_private.syms | ||
libvirt_probes.d | ||
libvirt_public.syms | ||
libvirt_qemu_probes.d | ||
libvirt_qemu.syms | ||
libvirt_remote.syms | ||
libvirt_sasl.syms | ||
libvirt_vmware.syms | ||
libvirt_vmx.syms | ||
libvirt_xenconfig.syms | ||
libvirt_xenxlconfig.syms | ||
libvirt-admin.c | ||
libvirt-admin.conf | ||
libvirt-domain-snapshot.c | ||
libvirt-domain.c | ||
libvirt-host.c | ||
libvirt-interface.c | ||
libvirt-lxc.c | ||
libvirt-lxc.pc.in | ||
libvirt-network.c | ||
libvirt-nodedev.c | ||
libvirt-nwfilter.c | ||
libvirt-qemu.c | ||
libvirt-qemu.pc.in | ||
libvirt-secret.c | ||
libvirt-storage.c | ||
libvirt-stream.c | ||
libvirt.c | ||
libvirt.conf | ||
libvirt.pc.in | ||
lock_protocol-structs | ||
lxc_monitor_protocol-structs | ||
lxc_protocol-structs | ||
Makefile.am | ||
nodeinfo.c | ||
nodeinfo.h | ||
qemu_protocol-structs | ||
README | ||
remote_protocol-structs | ||
virkeepaliveprotocol-structs | ||
virnetprotocol-structs |
libvirt library code README =========================== The directory provides the bulk of the libvirt codebase. Everything except for the libvirtd daemon and client tools. The build uses a large number of libtool convenience libraries - one for each child directory, and then links them together for the final libvirt.so, although some bits get linked directly to libvirtd daemon instead. The files directly in this directory are supporting the public API entry points & data structures. There are two core shared modules to be aware of: * util/ - a collection of shared APIs that can be used by any code. This directory is always in the include path for all things built * conf/ - APIs for parsing / manipulating all the official XML files used by the public API. This directory is only in the include path for driver implementation modules * vmx/ - VMware VMX config handling (used by esx/ and vmware/) Then there are the hypervisor implementations: * bhyve - bhyve - The BSD Hypervisor * esx/ - VMware ESX and GSX support using vSphere API over SOAP * hyperv/ - Microsoft Hyper-V support using WinRM * lxc/ - Linux Native Containers * openvz/ - OpenVZ containers using cli tools * phyp/ - IBM Power Hypervisor using CLI tools over SSH * qemu/ - QEMU / KVM using qemu CLI/monitor * remote/ - Generic libvirt native RPC client * test/ - A "mock" driver for testing * uml/ - User Mode Linux * vbox/ - Virtual Box using native API * vmware/ - VMware Workstation and Player using the vmrun tool * xen/ - Xen using hypercalls, XenD SEXPR & XenStore * xenapi/ - Xen using libxenserver Finally some secondary drivers that are shared for several HVs. Currently these are used by LXC, OpenVZ, QEMU, UML and Xen drivers. The ESX, Hyper-V, Power Hypervisor, Remote, Test & VirtualBox drivers all implement the secondary drivers directly * cpu/ - CPU feature management * interface/ - Host network interface management * network/ - Virtual NAT networking * nwfilter/ - Network traffic filtering rules * node_device/ - Host device enumeration * secret/ - Secret management * security/ - Mandatory access control drivers * storage/ - Storage management drivers Since both the hypervisor and secondary drivers can be built as dlopen()able modules, it is *FORBIDDEN* to have build dependencies between these directories. Drivers are only allowed to depend on the public API, and the internal APIs in the util/ and conf/ directories