libvirt/src/util/virhostcpu.c
Michal Privoznik 3c948ef699 virhostcpu: Introduce virHostCPUGetIsolated()
This is a helper that parses /sys/devices/system/cpu/isolated
into a virBitmap. It's going to be needed soon.

Signed-off-by: Michal Privoznik <mprivozn@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
2024-05-06 15:36:17 +02:00

1839 lines
52 KiB
C

/*
* virhostcpu.c: helper APIs for host CPU info
*
* Copyright (C) 2006-2016 Red Hat, Inc.
* Copyright (C) 2006 Daniel P. Berrange
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <dirent.h>
#include <fcntl.h>
#ifndef WIN32
# include <sys/ioctl.h>
#endif
#include <unistd.h>
#if WITH_LINUX_KVM_H
# include <linux/kvm.h>
#endif
#if defined(__FreeBSD__) || defined(__APPLE__)
# include <sys/time.h>
# include <sys/types.h>
# include <sys/sysctl.h>
# include <sys/resource.h>
#endif
#include "viralloc.h"
#define LIBVIRT_VIRHOSTCPUPRIV_H_ALLOW
#include "virhostcpupriv.h"
#include "virerror.h"
#include "virarch.h"
#include "virfile.h"
#include "virstring.h"
#include "virlog.h"
#define VIR_FROM_THIS VIR_FROM_NONE
VIR_LOG_INIT("util.hostcpu");
#define KVM_DEVICE "/dev/kvm"
#define MSR_DEVICE "/dev/cpu/0/msr"
#if defined(__FreeBSD__) || defined(__APPLE__)
static int
virHostCPUGetCountAppleFreeBSD(void)
{
int ncpu_mib[2] = { CTL_HW, HW_NCPU };
unsigned long ncpu;
size_t ncpu_len = sizeof(ncpu);
if (sysctl(ncpu_mib, 2, &ncpu, &ncpu_len, NULL, 0) == -1) {
virReportSystemError(errno, "%s", _("Cannot obtain CPU count"));
return -1;
}
return ncpu;
}
#endif /* defined(__FreeBSD__) || defined(__APPLE__) */
#ifdef __FreeBSD__
# define BSD_CPU_STATS_ALL 4
# define BSD_MEMORY_STATS_ALL 4
# define TICK_TO_NSEC (1000ull * 1000ull * 1000ull / (stathz ? stathz : hz))
static int
virHostCPUGetStatsFreeBSD(int cpuNum,
virNodeCPUStatsPtr params,
int *nparams)
{
const char *sysctl_name;
g_autofree long *cpu_times = NULL;
struct clockinfo clkinfo;
size_t i, j, cpu_times_size, clkinfo_size;
int cpu_times_num, offset, hz, stathz;
struct field_cpu_map {
const char *field;
int idx[CPUSTATES];
} cpu_map[] = {
{VIR_NODE_CPU_STATS_KERNEL, {CP_SYS}},
{VIR_NODE_CPU_STATS_USER, {CP_USER, CP_NICE}},
{VIR_NODE_CPU_STATS_IDLE, {CP_IDLE}},
{VIR_NODE_CPU_STATS_INTR, {CP_INTR}},
{NULL, {0}}
};
if ((*nparams) == 0) {
*nparams = BSD_CPU_STATS_ALL;
return 0;
}
if ((*nparams) != BSD_CPU_STATS_ALL) {
virReportInvalidArg(*nparams,
_("nparams in %1$s must be equal to %2$d"),
__FUNCTION__, BSD_CPU_STATS_ALL);
return -1;
}
clkinfo_size = sizeof(clkinfo);
if (sysctlbyname("kern.clockrate", &clkinfo, &clkinfo_size, NULL, 0) < 0) {
virReportSystemError(errno,
_("sysctl failed for '%1$s'"),
"kern.clockrate");
return -1;
}
stathz = clkinfo.stathz;
hz = clkinfo.hz;
if (cpuNum == VIR_NODE_CPU_STATS_ALL_CPUS) {
sysctl_name = "kern.cp_time";
cpu_times_num = 1;
offset = 0;
} else {
sysctl_name = "kern.cp_times";
cpu_times_num = virHostCPUGetCountAppleFreeBSD();
if (cpuNum >= cpu_times_num) {
virReportInvalidArg(cpuNum,
_("Invalid cpuNum in %1$s"),
__FUNCTION__);
return -1;
}
offset = cpu_times_num * CPUSTATES;
}
cpu_times_size = sizeof(long) * cpu_times_num * CPUSTATES;
cpu_times = g_new0(long, cpu_times_num * CPUSTATES);
if (sysctlbyname(sysctl_name, cpu_times, &cpu_times_size, NULL, 0) < 0) {
virReportSystemError(errno,
_("sysctl failed for '%1$s'"),
sysctl_name);
return -1;
}
for (i = 0; cpu_map[i].field != NULL; i++) {
virNodeCPUStatsPtr param = &params[i];
if (virStrcpyStatic(param->field, cpu_map[i].field) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Field '%1$s' too long for destination"),
cpu_map[i].field);
return -1;
}
param->value = 0;
for (j = 0; j < G_N_ELEMENTS(cpu_map[i].idx); j++)
param->value += cpu_times[offset + cpu_map[i].idx[j]] * TICK_TO_NSEC;
}
return 0;
}
#endif /* __FreeBSD__ */
/*
* Even though it doesn't exist on some platforms, the code is adjusted for
* graceful handling of that so that we don't have too many stub functions.
*/
#define SYSFS_SYSTEM_PATH "/sys/devices/system"
#ifdef __linux__
# define CPUINFO_PATH "/proc/cpuinfo"
# define PROCSTAT_PATH "/proc/stat"
# define LINUX_NB_CPU_STATS 4
int
virHostCPUGetSocket(unsigned int cpu, unsigned int *socket)
{
int tmp;
int ret = virFileReadValueInt(&tmp,
"%s/cpu/cpu%u/topology/physical_package_id",
SYSFS_SYSTEM_PATH, cpu);
/* If the file is not there, it's 0 */
if (ret == -2)
tmp = 0;
else if (ret < 0)
return -1;
/* Some architectures might have '-1' validly in the file, but that actually
* means there are no sockets, so from our point of view it's all one socket,
* i.e. socket 0. Similarly when the file does not exist. */
if (tmp < 0)
tmp = 0;
*socket = tmp;
return 0;
}
int
virHostCPUGetDie(unsigned int cpu, unsigned int *die)
{
int die_id;
int ret = virFileReadValueInt(&die_id,
"%s/cpu/cpu%u/topology/die_id",
SYSFS_SYSTEM_PATH, cpu);
if (ret == -1)
return -1;
/* If the file is not there, it's 0.
* Another alternative is die_id set to -1, meaning that
* the arch does not have die_id support. Set @die to
* 0 in this case too. */
if (ret == -2 || die_id < 0)
*die = 0;
else
*die = die_id;
return 0;
}
int
virHostCPUGetCluster(unsigned int cpu, unsigned int *cluster)
{
int cluster_id;
int ret = virFileReadValueInt(&cluster_id,
"%s/cpu/cpu%u/topology/cluster_id",
SYSFS_SYSTEM_PATH, cpu);
if (ret == -1)
return -1;
/* If the file doesn't exists (old kernel) or the value contained
* in it is -1 (architecture without CPU clusters), report 0 to
* indicate the lack of information */
if (ret == -2 || cluster_id < 0)
cluster_id = 0;
*cluster = cluster_id;
return 0;
}
int
virHostCPUGetCore(unsigned int cpu, unsigned int *core)
{
int ret = virFileReadValueUint(core,
"%s/cpu/cpu%u/topology/core_id",
SYSFS_SYSTEM_PATH, cpu);
/* If the file is not there, it's 0 */
if (ret == -2)
*core = 0;
else if (ret < 0)
return -1;
return 0;
}
virBitmap *
virHostCPUGetSiblingsList(unsigned int cpu)
{
virBitmap *ret = NULL;
int rv = -1;
rv = virFileReadValueBitmap(&ret,
"%s/cpu/cpu%u/topology/thread_siblings_list",
SYSFS_SYSTEM_PATH, cpu);
if (rv == -2) {
/* If the file doesn't exist, the threadis its only sibling */
ret = virBitmapNew(cpu + 1);
ignore_value(virBitmapSetBit(ret, cpu));
}
return ret;
}
static unsigned long
virHostCPUCountThreadSiblings(unsigned int cpu)
{
g_autoptr(virBitmap) siblings_map = NULL;
if (!(siblings_map = virHostCPUGetSiblingsList(cpu)))
return 0;
return virBitmapCountBits(siblings_map);
}
/* parses a node entry, returning number of processors in the node and
* filling arguments */
static int
ATTRIBUTE_NONNULL(1) ATTRIBUTE_NONNULL(3)
ATTRIBUTE_NONNULL(4) ATTRIBUTE_NONNULL(6)
ATTRIBUTE_NONNULL(7) ATTRIBUTE_NONNULL(8)
ATTRIBUTE_NONNULL(9)
virHostCPUParseNode(const char *node,
virArch arch,
virBitmap *present_cpus_map,
virBitmap *online_cpus_map,
int threads_per_subcore,
int *sockets,
int *cores,
int *threads,
int *offline)
{
int ret = -1;
int processors = 0;
g_autoptr(DIR) cpudir = NULL;
struct dirent *cpudirent = NULL;
g_autoptr(virBitmap) sockets_map = virBitmapNew(0);
virBitmap **cores_maps = NULL;
int npresent_cpus = virBitmapSize(present_cpus_map);
g_autoptr(virBitmap) node_cpus_map = virBitmapNew(npresent_cpus);
unsigned int sock_max = 0;
unsigned int sock;
unsigned int core;
size_t i;
int siblings;
unsigned int cpu;
int direrr;
*threads = 0;
*cores = 0;
*sockets = 0;
if (virDirOpen(&cpudir, node) < 0)
goto cleanup;
while ((direrr = virDirRead(cpudir, &cpudirent, node)) > 0) {
if (sscanf(cpudirent->d_name, "cpu%u", &cpu) != 1)
continue;
if (!virBitmapIsBitSet(present_cpus_map, cpu))
continue;
/* Mark this CPU as part of the current node */
if (virBitmapSetBit(node_cpus_map, cpu) < 0)
goto cleanup;
if (!virBitmapIsBitSet(online_cpus_map, cpu))
continue;
if (virHostCPUGetSocket(cpu, &sock) < 0)
goto cleanup;
virBitmapSetBitExpand(sockets_map, sock);
if (sock > sock_max)
sock_max = sock;
}
if (direrr < 0)
goto cleanup;
sock_max++;
/* allocate cores maps for each socket */
cores_maps = g_new0(virBitmap *, sock_max);
for (i = 0; i < sock_max; i++)
cores_maps[i] = virBitmapNew(0);
/* Iterate over all CPUs in the node, in ascending order */
for (cpu = 0; cpu < npresent_cpus; cpu++) {
/* Skip CPUs that are not part of the current node */
if (!virBitmapIsBitSet(node_cpus_map, cpu))
continue;
if (!virBitmapIsBitSet(online_cpus_map, cpu)) {
if (threads_per_subcore > 0 &&
cpu % threads_per_subcore != 0 &&
virBitmapIsBitSet(online_cpus_map,
cpu - (cpu % threads_per_subcore))) {
/* Secondary offline threads are counted as online when
* subcores are in use and the corresponding primary
* thread is online */
processors++;
} else {
/* But they are counted as offline otherwise */
(*offline)++;
}
continue;
}
processors++;
if (virHostCPUGetSocket(cpu, &sock) < 0)
goto cleanup;
if (!virBitmapIsBitSet(sockets_map, sock)) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s",
_("CPU socket topology has changed"));
goto cleanup;
}
/* Parse core */
if (ARCH_IS_S390(arch)) {
/* logical cpu is equivalent to a core on s390 */
core = cpu;
} else {
if (virHostCPUGetCore(cpu, &core) < 0)
goto cleanup;
}
virBitmapSetBitExpand(cores_maps[sock], core);
if (!(siblings = virHostCPUCountThreadSiblings(cpu)))
goto cleanup;
if (siblings > *threads)
*threads = siblings;
}
/* finalize the returned data */
*sockets = virBitmapCountBits(sockets_map);
for (i = 0; i < sock_max; i++) {
if (!virBitmapIsBitSet(sockets_map, i))
continue;
core = virBitmapCountBits(cores_maps[i]);
if (core > *cores)
*cores = core;
}
if (threads_per_subcore > 0) {
/* The thread count ignores offline threads, which means that only
* only primary threads have been considered so far. If subcores
* are in use, we need to also account for secondary threads */
*threads *= threads_per_subcore;
}
ret = processors;
cleanup:
if (cores_maps)
for (i = 0; i < sock_max; i++)
virBitmapFree(cores_maps[i]);
VIR_FREE(cores_maps);
return ret;
}
/* Check whether the host subcore configuration is valid.
*
* A valid configuration is one where no secondary thread is online;
* the primary thread in a subcore is always the first one */
static bool
virHostCPUHasValidSubcoreConfiguration(int threads_per_subcore)
{
g_autoptr(virBitmap) online_cpus = NULL;
int cpu = -1;
/* No point in checking if subcores are not in use */
if (threads_per_subcore <= 0)
return false;
if (!(online_cpus = virHostCPUGetOnlineBitmap()))
return false;
while ((cpu = virBitmapNextSetBit(online_cpus, cpu)) >= 0) {
/* A single online secondary thread is enough to
* make the configuration invalid */
if (cpu % threads_per_subcore != 0)
return false;
}
return true;
}
/**
* virHostCPUParseFrequencyString:
* @str: string to be parsed
* @prefix: expected prefix
* @mhz: output location
*
* Parse a /proc/cpuinfo line and extract the CPU frequency, if present.
*
* The expected format of @str looks like
*
* cpu MHz : 2100.000
*
* where @prefix ("cpu MHz" in the example), is architecture-dependent.
*
* The decimal part of the CPU frequency, as well as all whitespace, is
* ignored.
*
* Returns: 0 when the string has been parsed successfully and the CPU
* frequency has been stored in @mhz, >0 when the string has not
* been parsed but no error has occurred, <0 on failure.
*/
static int
virHostCPUParseFrequencyString(const char *str,
const char *prefix,
unsigned int *mhz)
{
char *p;
unsigned int ui;
/* If the string doesn't start with the expected prefix, then
* we're not looking at the right string and we should move on */
if (!STRPREFIX(str, prefix))
return 1;
/* Skip the prefix */
str += strlen(prefix);
/* Skip all whitespace */
while (g_ascii_isspace(*str))
str++;
if (*str == '\0')
goto error;
/* Skip the colon. If anything but a colon is found, then we're
* not looking at the right string and we should move on */
if (*str != ':')
return 1;
str++;
/* Skip all whitespace */
while (g_ascii_isspace(*str))
str++;
if (*str == '\0')
goto error;
/* Parse the frequency. We expect an unsigned value, optionally
* followed by a fractional part (which gets discarded) or some
* leading whitespace */
if (virStrToLong_ui(str, &p, 10, &ui) < 0 ||
(*p != '.' && *p != '\0' && !g_ascii_isspace(*p))) {
goto error;
}
*mhz = ui;
return 0;
error:
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing or invalid CPU frequency in %1$s"),
CPUINFO_PATH);
return -1;
}
static int
virHostCPUParseFrequency(FILE *cpuinfo,
virArch arch,
unsigned int *mhz)
{
const char *prefix = NULL;
char line[1024];
/* No sensible way to retrieve CPU frequency */
if (ARCH_IS_ARM(arch))
return 0;
if (ARCH_IS_X86(arch))
prefix = "cpu MHz";
else if (ARCH_IS_PPC(arch))
prefix = "clock";
else if (ARCH_IS_S390(arch))
prefix = "cpu MHz dynamic";
else if (ARCH_IS_LOONGARCH(arch))
prefix = "CPU MHz";
if (!prefix) {
VIR_WARN("%s is not supported by the %s parser",
virArchToString(arch),
CPUINFO_PATH);
return 1;
}
while (fgets(line, sizeof(line), cpuinfo) != NULL) {
if (virHostCPUParseFrequencyString(line, prefix, mhz) < 0)
return -1;
}
return 0;
}
static int
virHostCPUParsePhysAddrSize(FILE *cpuinfo, unsigned int *addrsz)
{
char line[1024];
while (fgets(line, sizeof(line), cpuinfo) != NULL) {
char *str;
char *endptr;
if (!(str = STRCASESKIP(line, "address sizes")))
continue;
/* Skip the colon. */
if ((str = strstr(str, ":")) == NULL)
goto error;
str++;
/* Parse the number of physical address bits */
if (virStrToLong_ui(str, &endptr, 10, addrsz) < 0)
goto error;
return 0;
}
error:
virReportError(VIR_ERR_INTERNAL_ERROR,
_("Missing or invalid CPU address size in %1$s"),
CPUINFO_PATH);
return -1;
}
int
virHostCPUGetInfoPopulateLinux(FILE *cpuinfo,
virArch arch,
unsigned int *cpus,
unsigned int *mhz,
unsigned int *nodes,
unsigned int *sockets,
unsigned int *cores,
unsigned int *threads)
{
g_autoptr(virBitmap) present_cpus_map = NULL;
g_autoptr(virBitmap) online_cpus_map = NULL;
g_autoptr(DIR) nodedir = NULL;
struct dirent *nodedirent = NULL;
int nodecpus, nodecores, nodesockets, nodethreads, offline = 0;
int threads_per_subcore = 0;
unsigned int node;
int ret = -1;
char *sysfs_nodedir = NULL;
char *sysfs_cpudir = NULL;
int direrr;
*mhz = 0;
*cpus = *nodes = *sockets = *cores = *threads = 0;
/* Start with parsing CPU clock speed from /proc/cpuinfo */
if (virHostCPUParseFrequency(cpuinfo, arch, mhz) < 0) {
VIR_WARN("Unable to parse CPU frequency information from %s",
CPUINFO_PATH);
}
/* Get information about what CPUs are present in the host and what
* CPUs are online, so that we don't have to so for each node */
present_cpus_map = virHostCPUGetPresentBitmap();
if (!present_cpus_map)
goto cleanup;
online_cpus_map = virHostCPUGetOnlineBitmap();
if (!online_cpus_map)
goto cleanup;
/* OK, we've parsed clock speed out of /proc/cpuinfo. Get the
* core, node, socket, thread and topology information from /sys
*/
sysfs_nodedir = g_strdup_printf("%s/node", SYSFS_SYSTEM_PATH);
if (virDirOpenQuiet(&nodedir, sysfs_nodedir) < 0) {
/* the host isn't probably running a NUMA architecture */
goto fallback;
}
/* PPC-KVM needs the secondary threads of a core to be offline on the
* host. The kvm scheduler brings the secondary threads online in the
* guest context. Moreover, P8 processor has split-core capability
* where, there can be 1,2 or 4 subcores per core. The primaries of the
* subcores alone will be online on the host for a subcore in the
* host. Even though the actual threads per core for P8 processor is 8,
* depending on the subcores_per_core = 1, 2 or 4, the threads per
* subcore will vary accordingly to 8, 4 and 2 respectively.
* So, On host threads_per_core what is arrived at from sysfs in the
* current logic is actually the subcores_per_core. Threads per subcore
* can only be obtained from the kvm device. For example, on P8 with 1
* core having 8 threads, sub_cores_percore=4, the threads 0,2,4 & 6
* will be online. The sysfs reflects this and in the current logic
* variable 'threads' will be 4 which is nothing but subcores_per_core.
* If the user tampers the cpu online/offline states using chcpu or other
* means, then it is an unsupported configuration for kvm.
* The code below tries to keep in mind
* - when the libvirtd is run inside a KVM guest or Phyp based guest.
* - Or on the kvm host where user manually tampers the cpu states to
* offline/online randomly.
* On hosts other than POWER this will be 0, in which case a simpler
* thread-counting logic will be used */
if ((threads_per_subcore = virHostCPUGetThreadsPerSubcore(arch)) < 0)
goto cleanup;
/* If the subcore configuration is not valid, just pretend subcores
* are not in use and count threads one by one */
if (!virHostCPUHasValidSubcoreConfiguration(threads_per_subcore))
threads_per_subcore = 0;
while ((direrr = virDirRead(nodedir, &nodedirent, sysfs_nodedir)) > 0) {
if (sscanf(nodedirent->d_name, "node%u", &node) != 1)
continue;
(*nodes)++;
sysfs_cpudir = g_strdup_printf("%s/node/%s", SYSFS_SYSTEM_PATH,
nodedirent->d_name);
if ((nodecpus = virHostCPUParseNode(sysfs_cpudir, arch,
present_cpus_map,
online_cpus_map,
threads_per_subcore,
&nodesockets, &nodecores,
&nodethreads, &offline)) < 0)
goto cleanup;
VIR_FREE(sysfs_cpudir);
*cpus += nodecpus;
if (nodesockets > *sockets)
*sockets = nodesockets;
if (nodecores > *cores)
*cores = nodecores;
if (nodethreads > *threads)
*threads = nodethreads;
}
if (direrr < 0)
goto cleanup;
if (*cpus && *nodes)
goto done;
fallback:
VIR_FREE(sysfs_cpudir);
sysfs_cpudir = g_strdup_printf("%s/cpu", SYSFS_SYSTEM_PATH);
if ((nodecpus = virHostCPUParseNode(sysfs_cpudir, arch,
present_cpus_map,
online_cpus_map,
threads_per_subcore,
&nodesockets, &nodecores,
&nodethreads, &offline)) < 0)
goto cleanup;
*nodes = 1;
*cpus = nodecpus;
*sockets = nodesockets;
*cores = nodecores;
*threads = nodethreads;
done:
/* There should always be at least one cpu, socket, node, and thread. */
if (*cpus == 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no CPUs found"));
goto cleanup;
}
if (*sockets == 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no sockets found"));
goto cleanup;
}
if (*threads == 0) {
virReportError(VIR_ERR_INTERNAL_ERROR, "%s", _("no threads found"));
goto cleanup;
}
/* Now check if the topology makes sense. There are machines that don't
* expose their real number of nodes or for example the AMD Bulldozer
* architecture that exposes their Clustered integer core modules as both
* threads and cores. This approach throws off our detection. Unfortunately
* the nodeinfo structure isn't designed to carry the full topology so
* we're going to lie about the detected topology to notify the user
* to check the host capabilities for the actual topology. */
if ((*nodes *
*sockets *
*cores *
*threads) != (*cpus + offline)) {
*nodes = 1;
*sockets = 1;
*cores = *cpus + offline;
*threads = 1;
}
ret = 0;
cleanup:
VIR_FREE(sysfs_nodedir);
VIR_FREE(sysfs_cpudir);
return ret;
}
# define TICK_TO_NSEC (1000ull * 1000ull * 1000ull / sysconf(_SC_CLK_TCK))
int
virHostCPUGetStatsLinux(FILE *procstat,
int cpuNum,
virNodeCPUStatsPtr params,
int *nparams)
{
char line[1024];
unsigned long long usr, ni, sys, idle, iowait;
unsigned long long irq, softirq, steal, guest, guest_nice;
g_autofree char *cpu_header = NULL;
if ((*nparams) == 0) {
/* Current number of cpu stats supported by linux */
*nparams = LINUX_NB_CPU_STATS;
return 0;
}
if ((*nparams) != LINUX_NB_CPU_STATS) {
virReportInvalidArg(*nparams,
_("nparams in %1$s must be equal to %2$d"),
__FUNCTION__, LINUX_NB_CPU_STATS);
return -1;
}
if (cpuNum == VIR_NODE_CPU_STATS_ALL_CPUS) {
cpu_header = g_strdup("cpu ");
} else {
cpu_header = g_strdup_printf("cpu%d ", cpuNum);
}
while (fgets(line, sizeof(line), procstat) != NULL) {
char *buf = line;
if (STRPREFIX(buf, cpu_header)) { /* aka logical CPU time */
if (sscanf(buf,
"%*s %llu %llu %llu %llu %llu" /* user ~ iowait */
"%llu %llu %llu %llu %llu", /* irq ~ guest_nice */
&usr, &ni, &sys, &idle, &iowait,
&irq, &softirq, &steal, &guest, &guest_nice) < 4) {
continue;
}
if (virHostCPUStatsAssign(&params[0], VIR_NODE_CPU_STATS_KERNEL,
(sys + irq + softirq) * TICK_TO_NSEC) < 0)
return -1;
if (virHostCPUStatsAssign(&params[1], VIR_NODE_CPU_STATS_USER,
(usr + ni) * TICK_TO_NSEC) < 0)
return -1;
if (virHostCPUStatsAssign(&params[2], VIR_NODE_CPU_STATS_IDLE,
idle * TICK_TO_NSEC) < 0)
return -1;
if (virHostCPUStatsAssign(&params[3], VIR_NODE_CPU_STATS_IOWAIT,
iowait * TICK_TO_NSEC) < 0)
return -1;
return 0;
}
}
virReportInvalidArg(cpuNum,
_("Invalid cpuNum in %1$s"),
__FUNCTION__);
return -1;
}
/* Determine the number of CPUs (maximum CPU id + 1) present in
* the host. */
static int
virHostCPUCountLinux(void)
{
g_autoptr(virBitmap) present = virHostCPUGetPresentBitmap();
if (!present)
return -1;
return virBitmapSize(present);
}
#endif
int
virHostCPUGetOnline(unsigned int cpu, bool *online)
{
unsigned int tmp = 0;
int ret = virFileReadValueUint(&tmp,
"%s/cpu/cpu%u/online",
SYSFS_SYSTEM_PATH, cpu);
/* If the file is not there, it's online (doesn't support offlining) */
if (ret == -2)
tmp = 1;
else if (ret < 0)
return -1;
*online = tmp;
return 0;
}
int
virHostCPUStatsAssign(virNodeCPUStatsPtr param,
const char *name,
unsigned long long value)
{
if (virStrcpyStatic(param->field, name) < 0) {
virReportError(VIR_ERR_INTERNAL_ERROR,
"%s", _("kernel cpu time field is too long for the destination"));
return -1;
}
param->value = value;
return 0;
}
int
virHostCPUGetInfo(virArch hostarch G_GNUC_UNUSED,
unsigned int *cpus G_GNUC_UNUSED,
unsigned int *mhz G_GNUC_UNUSED,
unsigned int *nodes G_GNUC_UNUSED,
unsigned int *sockets G_GNUC_UNUSED,
unsigned int *cores G_GNUC_UNUSED,
unsigned int *threads G_GNUC_UNUSED)
{
#ifdef __linux__
int ret = -1;
FILE *cpuinfo = fopen(CPUINFO_PATH, "r");
if (!cpuinfo) {
virReportSystemError(errno,
_("cannot open %1$s"), CPUINFO_PATH);
return -1;
}
ret = virHostCPUGetInfoPopulateLinux(cpuinfo, hostarch,
cpus, mhz, nodes,
sockets, cores, threads);
if (ret < 0)
goto cleanup;
cleanup:
VIR_FORCE_FCLOSE(cpuinfo);
return ret;
#elif defined(__FreeBSD__) || defined(__APPLE__)
unsigned long cpu_freq;
size_t cpu_freq_len = sizeof(cpu_freq);
*cpus = virHostCPUGetCountAppleFreeBSD();
if (*cpus == -1)
return -1;
*nodes = 1;
*sockets = 1;
*cores = *cpus;
*threads = 1;
# ifdef __FreeBSD__
/* dev.cpu.%d.freq reports current active CPU frequency. It is provided by
* the cpufreq(4) framework. However, it might be disabled or no driver
* available. In this case fallback to "hw.clockrate" which reports boot time
* CPU frequency. */
if (sysctlbyname("dev.cpu.0.freq", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) {
if (sysctlbyname("hw.clockrate", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) {
virReportSystemError(errno, "%s", _("cannot obtain CPU freq"));
return -1;
}
}
*mhz = cpu_freq;
# else
if (sysctlbyname("hw.cpufrequency", &cpu_freq, &cpu_freq_len, NULL, 0) < 0) {
if (errno == ENOENT) {
/* The hw.cpufrequency sysctl is not implemented on Apple Silicon.
* In that case, we report 0 instead of erroring out */
cpu_freq = 0;
} else {
virReportSystemError(errno, "%s", _("cannot obtain CPU freq"));
return -1;
}
}
*mhz = cpu_freq / 1000000;
# endif
return 0;
#else
/* XXX Solaris will need an impl later if they port QEMU driver */
virReportError(VIR_ERR_NO_SUPPORT, "%s",
_("node info not implemented on this platform"));
return -1;
#endif
}
int
virHostCPUGetStats(int cpuNum G_GNUC_UNUSED,
virNodeCPUStatsPtr params G_GNUC_UNUSED,
int *nparams G_GNUC_UNUSED,
unsigned int flags)
{
virCheckFlags(0, -1);
#ifdef __linux__
{
int ret;
FILE *procstat = fopen(PROCSTAT_PATH, "r");
if (!procstat) {
virReportSystemError(errno,
_("cannot open %1$s"), PROCSTAT_PATH);
return -1;
}
ret = virHostCPUGetStatsLinux(procstat, cpuNum, params, nparams);
VIR_FORCE_FCLOSE(procstat);
return ret;
}
#elif defined(__FreeBSD__)
return virHostCPUGetStatsFreeBSD(cpuNum, params, nparams);
#else
virReportError(VIR_ERR_NO_SUPPORT, "%s",
_("node CPU stats not implemented on this platform"));
return -1;
#endif
}
int
virHostCPUGetCount(void)
{
#if defined(__linux__)
return virHostCPUCountLinux();
#elif defined(__FreeBSD__) || defined(__APPLE__)
return virHostCPUGetCountAppleFreeBSD();
#else
virReportError(VIR_ERR_NO_SUPPORT, "%s",
_("host cpu counting not implemented on this platform"));
return -1;
#endif
}
bool
virHostCPUHasBitmap(void)
{
#ifdef __linux__
return true;
#else
return false;
#endif
}
virBitmap *
virHostCPUGetPresentBitmap(void)
{
#ifdef __linux__
virBitmap *ret = NULL;
virFileReadValueBitmap(&ret, "%s/cpu/present", SYSFS_SYSTEM_PATH);
return ret;
#else
virReportError(VIR_ERR_NO_SUPPORT, "%s",
_("node present CPU map not implemented on this platform"));
return NULL;
#endif
}
virBitmap *
virHostCPUGetOnlineBitmap(void)
{
#ifdef __linux__
virBitmap *ret = NULL;
virFileReadValueBitmap(&ret, "%s/cpu/online", SYSFS_SYSTEM_PATH);
return ret;
#else
virReportError(VIR_ERR_NO_SUPPORT, "%s",
_("node online CPU map not implemented on this platform"));
return NULL;
#endif
}
int
virHostCPUGetMap(unsigned char **cpumap,
unsigned int *online,
unsigned int flags)
{
g_autoptr(virBitmap) cpus = NULL;
int ret = -1;
int dummy;
virCheckFlags(0, -1);
if (!cpumap && !online)
return virHostCPUGetCount();
if (!(cpus = virHostCPUGetOnlineBitmap()))
goto cleanup;
if (cpumap && virBitmapToData(cpus, cpumap, &dummy) < 0)
goto cleanup;
if (online)
*online = virBitmapCountBits(cpus);
ret = virHostCPUGetCount();
cleanup:
if (ret < 0 && cpumap)
VIR_FREE(*cpumap);
return ret;
}
/* virHostCPUGetAvailableCPUsBitmap():
*
* Returns a virBitmap object with all available host CPUs.
*
* This is a glorified wrapper of virHostCPUGetOnlineBitmap()
* that, instead of returning NULL when 'ifndef __linux__' and
* the caller having to handle it outside the function, returns
* a virBitmap with all the possible CPUs in the host, up to
* virHostCPUGetCount(). */
virBitmap *
virHostCPUGetAvailableCPUsBitmap(void)
{
g_autoptr(virBitmap) bitmap = NULL;
if (!(bitmap = virHostCPUGetOnlineBitmap())) {
int hostcpus;
if ((hostcpus = virHostCPUGetCount()) < 0)
return NULL;
bitmap = virBitmapNew(hostcpus);
virBitmapSetAll(bitmap);
}
return g_steal_pointer(&bitmap);
}
/**
* virHostCPUGetIsolated:
* @isolated: returned bitmap of isolated CPUs
*
* Sets @isolated to point to a bitmap of isolated CPUs (e.g. those passed to
* isolcpus= kernel cmdline). If the file doesn't exist, @isolated is set to
* NULL and success is returned. If the file does exist but it's empty,
* @isolated is set to an empty bitmap and success is returned.
*
* Returns: 0 on success,
* -1 otherwise (with error reported).
*/
int
virHostCPUGetIsolated(virBitmap **isolated)
{
g_autoptr(virBitmap) bitmap = NULL;
int rc;
rc = virFileReadValueBitmapAllowEmpty(&bitmap, "%s/cpu/isolated", SYSFS_SYSTEM_PATH);
if (rc == -2) {
*isolated = NULL;
return 0;
} else if (rc < 0) {
return -1;
}
*isolated = g_steal_pointer(&bitmap);
return 0;
}
#if WITH_LINUX_KVM_H && defined(KVM_CAP_PPC_SMT)
/* Get the number of threads per subcore.
*
* This will be 2, 4 or 8 on POWER hosts, depending on the current
* micro-threading configuration, and 0 everywhere else.
*
* Returns the number of threads per subcore if subcores are in use, zero
* if subcores are not in use, and a negative value on error */
int
virHostCPUGetThreadsPerSubcore(virArch arch)
{
int threads_per_subcore = 0;
int kvmfd;
if (ARCH_IS_PPC64(arch)) {
/* It's okay if /dev/kvm doesn't exist, because
* a. we might be running in a guest
* b. the kvm module might not be installed or enabled
* In either case, falling back to the subcore-unaware thread
* counting logic is the right thing to do */
if (!virFileExists(KVM_DEVICE))
return 0;
if ((kvmfd = open(KVM_DEVICE, O_RDONLY)) < 0) {
/* This can happen when running as a regular user if
* permissions are tight enough, in which case erroring out
* is better than silently falling back and reporting
* different nodeinfo depending on the user */
virReportSystemError(errno,
_("Failed to open '%1$s'"),
KVM_DEVICE);
return -1;
}
/* For Phyp and KVM based guests the ioctl for KVM_CAP_PPC_SMT
* returns zero and both primary and secondary threads will be
* online */
threads_per_subcore = ioctl(kvmfd,
KVM_CHECK_EXTENSION,
KVM_CAP_PPC_SMT);
VIR_FORCE_CLOSE(kvmfd);
}
return threads_per_subcore;
}
#else
/* Fallback for nodeGetThreadsPerSubcore() used when KVM headers
* are not available on the system */
int
virHostCPUGetThreadsPerSubcore(virArch arch G_GNUC_UNUSED)
{
return 0;
}
#endif /* WITH_LINUX_KVM_H && defined(KVM_CAP_PPC_SMT) */
#if WITH_LINUX_KVM_H
int
virHostCPUGetKVMMaxVCPUs(void)
{
int fd;
int ret;
if ((fd = open(KVM_DEVICE, O_RDONLY)) < 0) {
virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE);
return -1;
}
# ifdef KVM_CAP_MAX_VCPUS
/* at first try KVM_CAP_MAX_VCPUS to determine the maximum count */
if ((ret = ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_MAX_VCPUS)) > 0)
goto cleanup;
# endif /* KVM_CAP_MAX_VCPUS */
/* as a fallback get KVM_CAP_NR_VCPUS (the recommended maximum number of
* vcpus). Note that on most machines this is set to 160. */
if ((ret = ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_NR_VCPUS)) > 0)
goto cleanup;
/* if KVM_CAP_NR_VCPUS doesn't exist either, kernel documentation states
* that 4 should be used as the maximum number of cpus */
ret = 4;
cleanup:
VIR_FORCE_CLOSE(fd);
return ret;
}
#else
int
virHostCPUGetKVMMaxVCPUs(void)
{
virReportSystemError(ENOSYS, "%s",
_("KVM is not supported on this platform"));
return -1;
}
#endif /* WITH_LINUX_KVM_H */
#ifdef __linux__
/*
* Returns 0 if the microcode version is unknown or cannot be read for
* some reason.
*/
unsigned int
virHostCPUGetMicrocodeVersion(virArch hostArch)
{
g_autofree char *outbuf = NULL;
char *cur;
unsigned int version = 0;
if (!ARCH_IS_X86(hostArch))
return 0;
if (virFileReadHeaderQuiet(CPUINFO_PATH, 4096, &outbuf) < 0) {
VIR_DEBUG("Failed to read microcode version from %s: %s",
CPUINFO_PATH, g_strerror(errno));
return 0;
}
/* Account for format 'microcode : XXXX'*/
if (!(cur = strstr(outbuf, "microcode")) ||
!(cur = strchr(cur, ':')))
return 0;
cur++;
/* Linux places the microcode revision in a 32-bit integer, so
* ui is fine for us too. */
if (virStrToLong_ui(cur, &cur, 0, &version) < 0)
return 0;
return version;
}
#else
unsigned int
virHostCPUGetMicrocodeVersion(virArch hostArch G_GNUC_UNUSED)
{
return 0;
}
#endif /* __linux__ */
#if WITH_LINUX_KVM_H && defined(KVM_GET_MSRS) && \
(defined(__i386__) || defined(__x86_64__)) && \
(defined(__linux__) || defined(__FreeBSD__))
static int
virHostCPUGetMSRFromKVM(unsigned long index,
uint64_t *result)
{
VIR_AUTOCLOSE fd = -1;
g_autofree struct kvm_msrs *msr = g_malloc0(sizeof(struct kvm_msrs) +
sizeof(struct kvm_msr_entry));
msr->nmsrs = 1;
msr->entries[0].index = index;
if ((fd = open(KVM_DEVICE, O_RDONLY)) < 0) {
virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE);
return -1;
}
if (ioctl(fd, KVM_GET_MSRS, msr) < 0) {
VIR_DEBUG("Cannot get MSR 0x%lx from KVM", index);
return 1;
}
*result = msr->entries[0].data;
return 0;
}
/*
* Returns 0 on success,
* 1 when the MSR is not supported by the host CPU,
* -1 on error.
*/
int
virHostCPUGetMSR(unsigned long index,
uint64_t *msr)
{
VIR_AUTOCLOSE fd = -1;
*msr = 0;
if ((fd = open(MSR_DEVICE, O_RDONLY)) < 0) {
VIR_DEBUG("Unable to open %s: %s",
MSR_DEVICE, g_strerror(errno));
} else {
int rc = pread(fd, msr, sizeof(*msr), index);
if (rc == sizeof(*msr))
return 0;
if (rc < 0 && errno == EIO) {
VIR_DEBUG("CPU does not support MSR 0x%lx", index);
return 1;
}
VIR_DEBUG("Cannot read MSR 0x%lx from %s: %s",
index, MSR_DEVICE, g_strerror(errno));
}
VIR_DEBUG("Falling back to KVM ioctl");
return virHostCPUGetMSRFromKVM(index, msr);
}
/**
* virHostCPUGetCPUIDFilterVolatile:
*
* Filters the 'kvm_cpuid2' struct and removes data which may change depending
* on the CPU core this was run on.
*
* Currently filtered fields:
* - local APIC ID
* - topology ids and information on AMD cpus
*/
static void
virHostCPUGetCPUIDFilterVolatile(struct kvm_cpuid2 *kvm_cpuid)
{
size_t i;
bool isAMD = false;
for (i = 0; i < kvm_cpuid->nent; ++i) {
struct kvm_cpuid_entry2 *entry = &kvm_cpuid->entries[i];
/* filter out local apic id */
if (entry->function == 0x01 && entry->index == 0x00)
entry->ebx &= 0x00ffffff;
if (entry->function == 0x0b)
entry->edx &= 0xffffff00;
/* Match AMD hosts */
if (entry->function == 0x00 && entry->index == 0x00 &&
entry->ebx == 0x68747541 && /* Auth */
entry->edx == 0x69746e65 && /* enti */
entry->ecx == 0x444d4163) /* cAMD */
isAMD = true;
/* AMD APIC ID and topology information:
*
* Leaf 0x8000001e
*
* CPUID Fn8000_001E_EAX Extended APIC ID
* 31:0 ExtendedApicId: extended APIC ID.
*
* CPUID Fn8000_001E_EBX Compute Unit Identifiers
* 31:10 Reserved.
* 9:8 CoresPerComputeUnit: cores per compute unit.
* The number of cores per compute unit is CoresPerComputeUnit+1.
* 7:0 ComputeUnitId: compute unit ID. Identifies the processor compute unit ID.
*
* CPUID Fn8000_001E_ECX Node Identifiers
* 31:11 Reserved.
* 10:8 NodesPerProcessor. Specifies the number of nodes per processor.
* 000b 1 node per processor
* 001b 2 nodes per processor
* 111b-010b Reserved
* 7:0 NodeId. Specifies the node ID.
*
* CPUID Fn8000_001E_EDX Reserved
* 31:0 Reserved.
*
* For libvirt none of this information seems to be interesting, thus
* we clear all of it including reserved bits for future-proofing.
*/
if (isAMD && entry->function == 0x8000001e) {
entry->eax = 0x00;
entry->ebx = 0x00;
entry->ecx = 0x00;
entry->edx = 0x00;
}
}
}
struct kvm_cpuid2 *
virHostCPUGetCPUID(void)
{
size_t alloc_size;
VIR_AUTOCLOSE fd = open(KVM_DEVICE, O_RDONLY);
if (fd < 0) {
virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE);
return NULL;
}
/* Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
* with the 'nent' field indicating the number of entries in the variable-size
* array 'entries'. If the number of entries is too low to describe the cpu
* capabilities, an error (E2BIG) is returned. If the number is too high,
* the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
* number is just right, the 'nent' field is adjusted to the number of valid
* entries in the 'entries' array, which is then filled. */
for (alloc_size = 64; alloc_size <= 65536; alloc_size *= 2) {
g_autofree struct kvm_cpuid2 *kvm_cpuid = NULL;
kvm_cpuid = g_malloc0(sizeof(struct kvm_cpuid2) +
sizeof(struct kvm_cpuid_entry2) * alloc_size);
kvm_cpuid->nent = alloc_size;
if (ioctl(fd, KVM_GET_SUPPORTED_CPUID, kvm_cpuid) == 0) {
virHostCPUGetCPUIDFilterVolatile(kvm_cpuid);
return g_steal_pointer(&kvm_cpuid);
}
/* enlarge the buffer and try again */
if (errno == E2BIG) {
VIR_DEBUG("looping %zu", alloc_size);
continue;
}
/* we fail on any other error code to prevent pointless looping */
break;
}
virReportSystemError(errno, "%s", _("Cannot read host CPUID"));
return NULL;
}
/*
* This function should only be called when the host CPU supports invariant TSC
* (invtsc CPUID feature).
*
* Returns pointer to the TSC info structure on success,
* NULL when TSC cannot be probed otherwise.
*/
virHostCPUTscInfo *
virHostCPUGetTscInfo(void)
{
g_autofree virHostCPUTscInfo *info = g_new0(virHostCPUTscInfo, 1);
VIR_AUTOCLOSE kvmFd = -1;
VIR_AUTOCLOSE vmFd = -1;
VIR_AUTOCLOSE vcpuFd = -1;
int rc;
if ((kvmFd = open(KVM_DEVICE, O_RDONLY)) < 0) {
virReportSystemError(errno, _("Unable to open %1$s"), KVM_DEVICE);
return NULL;
}
if ((vmFd = ioctl(kvmFd, KVM_CREATE_VM, 0)) < 0) {
virReportSystemError(errno, "%s",
_("Unable to create KVM VM for TSC probing"));
return NULL;
}
if ((vcpuFd = ioctl(vmFd, KVM_CREATE_VCPU, 0)) < 0) {
virReportSystemError(errno, "%s",
_("Unable to create KVM vCPU for TSC probing"));
return NULL;
}
if ((rc = ioctl(vcpuFd, KVM_GET_TSC_KHZ)) < 0) {
virReportSystemError(errno, "%s",
_("Unable to probe TSC frequency"));
return NULL;
}
info->frequency = rc * 1000ULL;
if ((rc = ioctl(kvmFd, KVM_CHECK_EXTENSION, KVM_CAP_TSC_CONTROL)) < 0) {
virReportSystemError(errno, "%s",
_("Unable to query TSC scaling support"));
return NULL;
}
info->scaling = rc ? VIR_TRISTATE_BOOL_YES : VIR_TRISTATE_BOOL_NO;
VIR_DEBUG("Detected TSC frequency %llu Hz, scaling %s",
info->frequency, virTristateBoolTypeToString(info->scaling));
return g_steal_pointer(&info);
}
#else
struct kvm_cpuid2 *
virHostCPUGetCPUID(void)
{
virReportSystemError(ENOSYS, "%s",
_("Reading CPUID is not supported on this platform"));
return NULL;
}
int
virHostCPUGetMSR(unsigned long index G_GNUC_UNUSED,
uint64_t *msr G_GNUC_UNUSED)
{
virReportSystemError(ENOSYS, "%s",
_("Reading MSRs is not supported on this platform"));
return -1;
}
virHostCPUTscInfo *
virHostCPUGetTscInfo(void)
{
virReportSystemError(ENOSYS, "%s",
_("Probing TSC is not supported on this platform"));
return NULL;
}
#endif /* WITH_LINUX_KVM_H && defined(KVM_GET_MSRS) && \
(defined(__i386__) || defined(__x86_64__)) && \
(defined(__linux__) || defined(__FreeBSD__)) */
int
virHostCPUReadSignature(virArch arch,
FILE *cpuinfo,
char **signature)
{
size_t lineLen = 1024;
g_autofree char *line = g_new0(char, lineLen);
g_autofree char *vendor = NULL;
g_autofree char *name = NULL;
g_autofree char *family = NULL;
g_autofree char *model = NULL;
g_autofree char *stepping = NULL;
g_autofree char *revision = NULL;
g_autofree char *proc = NULL;
g_autofree char *facilities = NULL;
if (!ARCH_IS_X86(arch) && !ARCH_IS_PPC64(arch) && !ARCH_IS_S390(arch))
return 0;
while (fgets(line, lineLen, cpuinfo)) {
g_auto(GStrv) parts = g_strsplit(line, ": ", 2);
if (g_strv_length(parts) != 2)
continue;
g_strstrip(parts[0]);
g_strstrip(parts[1]);
if (ARCH_IS_X86(arch)) {
if (STREQ(parts[0], "vendor_id")) {
if (!vendor)
vendor = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "model name")) {
if (!name)
name = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "cpu family")) {
if (!family)
family = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "model")) {
if (!model)
model = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "stepping")) {
if (!stepping)
stepping = g_steal_pointer(&parts[1]);
}
if (vendor && name && family && model && stepping) {
*signature = g_strdup_printf("%s, %s, family: %s, model: %s, stepping: %s",
vendor, name, family, model, stepping);
return 0;
}
} else if (ARCH_IS_PPC64(arch)) {
if (STREQ(parts[0], "cpu")) {
if (!name)
name = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "revision")) {
if (!revision)
revision = g_steal_pointer(&parts[1]);
}
if (name && revision) {
*signature = g_strdup_printf("%s, rev %s", name, revision);
return 0;
}
} else if (ARCH_IS_S390(arch)) {
if (STREQ(parts[0], "vendor_id")) {
if (!vendor)
vendor = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "processor 0")) {
if (!proc)
proc = g_steal_pointer(&parts[1]);
} else if (STREQ(parts[0], "facilities")) {
if (!facilities)
facilities = g_steal_pointer(&parts[1]);
}
if (vendor && proc && facilities) {
*signature = g_strdup_printf("%s, %s, facilities: %s",
vendor, proc, facilities);
return 0;
}
}
}
return 0;
}
#ifdef __linux__
int
virHostCPUGetSignature(char **signature)
{
g_autoptr(FILE) cpuinfo = NULL;
*signature = NULL;
if (!(cpuinfo = fopen(CPUINFO_PATH, "r"))) {
virReportSystemError(errno, _("Failed to open cpuinfo file '%1$s'"),
CPUINFO_PATH);
return -1;
}
return virHostCPUReadSignature(virArchFromHost(), cpuinfo, signature);
}
int
virHostCPUGetPhysAddrSize(const virArch hostArch,
unsigned int *size)
{
g_autoptr(FILE) cpuinfo = NULL;
if (!(ARCH_IS_X86(hostArch) || ARCH_IS_SH4(hostArch) ||
ARCH_IS_LOONGARCH(hostArch))) {
/* Ensure size is set to 0 as physical address size is unknown */
*size = 0;
return 0;
}
if (!(cpuinfo = fopen(CPUINFO_PATH, "r"))) {
virReportSystemError(errno, _("Failed to open cpuinfo file '%1$s'"),
CPUINFO_PATH);
return -1;
}
return virHostCPUParsePhysAddrSize(cpuinfo, size);
}
#else
int
virHostCPUGetSignature(char **signature)
{
*signature = NULL;
return 0;
}
int
virHostCPUGetPhysAddrSize(const virArch hostArch G_GNUC_UNUSED,
unsigned int *size G_GNUC_UNUSED)
{
errno = ENOSYS;
return -1;
}
#endif /* __linux__ */
int
virHostCPUGetHaltPollTime(pid_t pid,
unsigned long long *haltPollSuccess,
unsigned long long *haltPollFail)
{
g_autofree char *pidToStr = NULL;
g_autofree char *debugFsPath = NULL;
g_autofree char *kvmPath = NULL;
struct dirent *ent = NULL;
g_autoptr(DIR) dir = NULL;
bool found = false;
if (!(debugFsPath = virFileFindMountPoint("debugfs")))
return -1;
kvmPath = g_strdup_printf("%s/%s", debugFsPath, "kvm");
if (virDirOpenQuiet(&dir, kvmPath) != 1)
return -1;
pidToStr = g_strdup_printf("%lld-", (long long)pid);
while (virDirRead(dir, &ent, NULL) > 0) {
if (STRPREFIX(ent->d_name, pidToStr)) {
found = true;
break;
}
}
if (!found)
return -1;
if (virFileReadValueUllongQuiet(haltPollSuccess, "%s/%s/%s", kvmPath,
ent->d_name, "halt_poll_success_ns") < 0 ||
virFileReadValueUllongQuiet(haltPollFail, "%s/%s/%s", kvmPath,
ent->d_name, "halt_poll_fail_ns") < 0)
return -1;
return 0;
}
void
virHostCPUX86GetCPUID(uint32_t leaf G_GNUC_UNUSED,
uint32_t extended G_GNUC_UNUSED,
uint32_t *eax,
uint32_t *ebx,
uint32_t *ecx,
uint32_t *edx)
{
#if defined(__i386__) || defined(__x86_64__)
uint32_t out[4];
# if __x86_64__
asm("xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */
"xor %%edx, %%edx;" /* functions may use them as additional arguments */
"cpuid;"
: "=a" (out[0]),
"=b" (out[1]),
"=c" (out[2]),
"=d" (out[3])
: "a" (leaf),
"c" (extended));
# else
/* we need to avoid direct use of ebx for CPUID output as it is used
* for global offset table on i386 with -fPIC
*/
asm("push %%ebx;"
"xor %%ebx, %%ebx;" /* clear the other registers as some cpuid */
"xor %%edx, %%edx;" /* functions may use them as additional arguments */
"cpuid;"
"mov %%ebx, %1;"
"pop %%ebx;"
: "=a" (out[0]),
"=r" (out[1]),
"=c" (out[2]),
"=d" (out[3])
: "a" (leaf),
"c" (extended)
: "cc");
# endif
if (eax)
*eax = out[0];
if (ebx)
*ebx = out[1];
if (ecx)
*ecx = out[2];
if (edx)
*edx = out[3];
#else
if (eax)
*eax = 0;
if (ebx)
*ebx = 0;
if (ecx)
*ecx = 0;
if (edx)
*edx = 0;
#endif
}