cloud-hypervisor/vmm/src/vm.rs

2174 lines
70 KiB
Rust
Raw Normal View History

// Copyright © 2020, Oracle and/or its affiliates.
//
// Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright © 2019 Intel Corporation
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
//
extern crate arch;
extern crate devices;
extern crate epoll;
extern crate hypervisor;
extern crate libc;
extern crate linux_loader;
extern crate net_util;
extern crate signal_hook;
extern crate vm_allocator;
extern crate vm_memory;
#[cfg(feature = "acpi")]
use crate::config::NumaConfig;
use crate::config::{
DeviceConfig, DiskConfig, FsConfig, HotplugMethod, NetConfig, PmemConfig, ValidationError,
VmConfig, VsockConfig,
};
use crate::cpu;
use crate::device_manager::{self, get_win_size, Console, DeviceManager, DeviceManagerError};
use crate::memory_manager::{Error as MemoryManagerError, MemoryManager};
use crate::migration::{get_vm_snapshot, url_to_path, VM_SNAPSHOT_FILE};
use crate::seccomp_filters::{get_seccomp_filter, Thread};
use crate::{
PciDeviceInfo, CPU_MANAGER_SNAPSHOT_ID, DEVICE_MANAGER_SNAPSHOT_ID, MEMORY_MANAGER_SNAPSHOT_ID,
};
use anyhow::anyhow;
use arch::get_host_cpu_phys_bits;
#[cfg(target_arch = "x86_64")]
use arch::BootProtocol;
use arch::EntryPoint;
use devices::HotPlugNotificationFlags;
use hypervisor::vm::{HypervisorVmError, VmmOps};
use linux_loader::cmdline::Cmdline;
#[cfg(target_arch = "x86_64")]
use linux_loader::loader::elf::Error::InvalidElfMagicNumber;
#[cfg(target_arch = "x86_64")]
use linux_loader::loader::elf::PvhBootCapability::PvhEntryPresent;
use linux_loader::loader::KernelLoader;
use seccomp::{SeccompAction, SeccompFilter};
use signal_hook::{iterator::Signals, SIGINT, SIGTERM, SIGWINCH};
use std::cmp;
use std::collections::{BTreeMap, HashMap};
use std::convert::TryInto;
use std::ffi::CString;
#[cfg(target_arch = "x86_64")]
use std::fmt;
use std::fs::{File, OpenOptions};
use std::io::{self, Read, Write};
use std::io::{Seek, SeekFrom};
use std::num::Wrapping;
use std::ops::Deref;
use std::sync::{Arc, Mutex, RwLock};
use std::{result, str, thread};
use url::Url;
use vm_device::Bus;
use vm_memory::{
Address, Bytes, GuestAddress, GuestAddressSpace, GuestMemory, GuestMemoryAtomic,
GuestMemoryMmap, GuestMemoryRegion, GuestRegionMmap,
};
use vm_migration::{
protocol::{MemoryRange, MemoryRangeTable},
Migratable, MigratableError, Pausable, Snapshot, SnapshotDataSection, Snapshottable,
Transportable,
};
use vmm_sys_util::eventfd::EventFd;
use vmm_sys_util::terminal::Terminal;
#[cfg(target_arch = "aarch64")]
use arch::aarch64::gic::gicv3::kvm::{KvmGICv3, GIC_V3_SNAPSHOT_ID};
#[cfg(target_arch = "aarch64")]
use arch::aarch64::gic::kvm::create_gic;
// 64 bit direct boot entry offset for bzImage
#[cfg(target_arch = "x86_64")]
const KERNEL_64BIT_ENTRY_OFFSET: u64 = 0x200;
/// Errors associated with VM management
#[derive(Debug)]
pub enum Error {
/// Cannot open the kernel image
KernelFile(io::Error),
/// Cannot open the initramfs image
InitramfsFile(io::Error),
/// Cannot load the kernel in memory
KernelLoad(linux_loader::loader::Error),
/// Cannot load the initramfs in memory
InitramfsLoad,
/// Cannot load the command line in memory
LoadCmdLine(linux_loader::loader::Error),
/// Cannot modify the command line
CmdLineInsertStr(linux_loader::cmdline::Error),
/// Cannot convert command line into CString
CmdLineCString(std::ffi::NulError),
/// Cannot configure system
ConfigureSystem(arch::Error),
/// Cannot enable interrupt controller
EnableInterruptController(device_manager::DeviceManagerError),
PoisonedState,
/// Cannot create a device manager.
DeviceManager(DeviceManagerError),
/// Write to the console failed.
Console(vmm_sys_util::errno::Error),
/// Cannot setup terminal in raw mode.
SetTerminalRaw(vmm_sys_util::errno::Error),
/// Cannot setup terminal in canonical mode.
SetTerminalCanon(vmm_sys_util::errno::Error),
/// Failed parsing network parameters
ParseNetworkParameters,
/// Memory is overflow
MemOverflow,
/// Failed to allocate the IOAPIC memory range.
IoapicRangeAllocation,
/// Cannot spawn a signal handler thread
SignalHandlerSpawn(io::Error),
/// Failed to join on vCPU threads
ThreadCleanup(std::boxed::Box<dyn std::any::Any + std::marker::Send>),
/// VM is not created
VmNotCreated,
/// VM is already created
VmAlreadyCreated,
/// VM is not running
VmNotRunning,
/// Cannot clone EventFd.
EventFdClone(io::Error),
/// Invalid VM state transition
InvalidStateTransition(VmState, VmState),
/// Error from CPU handling
CpuManager(cpu::Error),
/// Cannot pause devices
PauseDevices(MigratableError),
/// Cannot resume devices
ResumeDevices(MigratableError),
/// Cannot pause CPUs
PauseCpus(MigratableError),
/// Cannot resume cpus
ResumeCpus(MigratableError),
/// Cannot pause VM
Pause(MigratableError),
/// Cannot resume VM
Resume(MigratableError),
/// Memory manager error
MemoryManager(MemoryManagerError),
/// No PCI support
NoPciSupport,
/// Eventfd write error
EventfdError(std::io::Error),
/// Cannot snapshot VM
Snapshot(MigratableError),
/// Cannot restore VM
Restore(MigratableError),
/// Cannot send VM snapshot
SnapshotSend(MigratableError),
/// Cannot convert source URL from Path into &str
RestoreSourceUrlPathToStr,
/// Failed to validate config
ConfigValidation(ValidationError),
/// No more that one virtio-vsock device
TooManyVsockDevices,
/// Failed serializing into JSON
SerializeJson(serde_json::Error),
/// Invalid configuration for NUMA.
InvalidNumaConfig,
/// Cannot create seccomp filter
CreateSeccompFilter(seccomp::SeccompError),
/// Cannot apply seccomp filter
ApplySeccompFilter(seccomp::Error),
/// Failed resizing a memory zone.
ResizeZone,
/// Failed setting the VmmOps interface.
SetVmmOpsInterface(hypervisor::HypervisorVmError),
}
pub type Result<T> = result::Result<T, Error>;
#[derive(Clone, Default)]
pub struct NumaNode {
memory_regions: Vec<Arc<GuestRegionMmap>>,
hotplug_regions: Vec<Arc<GuestRegionMmap>>,
cpus: Vec<u8>,
distances: BTreeMap<u32, u8>,
memory_zones: Vec<String>,
}
impl NumaNode {
pub fn memory_regions(&self) -> &Vec<Arc<GuestRegionMmap>> {
&self.memory_regions
}
pub fn hotplug_regions(&self) -> &Vec<Arc<GuestRegionMmap>> {
&self.hotplug_regions
}
pub fn cpus(&self) -> &Vec<u8> {
&self.cpus
}
pub fn distances(&self) -> &BTreeMap<u32, u8> {
&self.distances
}
pub fn memory_zones(&self) -> &Vec<String> {
&self.memory_zones
}
}
pub type NumaNodes = BTreeMap<u32, NumaNode>;
#[derive(Clone, Copy, Debug, Deserialize, Serialize, PartialEq)]
pub enum VmState {
Created,
Running,
Shutdown,
Paused,
}
impl VmState {
fn valid_transition(self, new_state: VmState) -> Result<()> {
match self {
VmState::Created => match new_state {
VmState::Created | VmState::Shutdown => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running | VmState::Paused => Ok(()),
},
VmState::Running => match new_state {
VmState::Created | VmState::Running => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Paused | VmState::Shutdown => Ok(()),
},
VmState::Shutdown => match new_state {
VmState::Paused | VmState::Created | VmState::Shutdown => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running => Ok(()),
},
VmState::Paused => match new_state {
VmState::Created | VmState::Paused => {
Err(Error::InvalidStateTransition(self, new_state))
}
VmState::Running | VmState::Shutdown => Ok(()),
},
}
}
}
// Debug I/O port
#[cfg(target_arch = "x86_64")]
const DEBUG_IOPORT: u16 = 0x80;
#[cfg(target_arch = "x86_64")]
const DEBUG_IOPORT_PREFIX: &str = "Debug I/O port";
#[cfg(target_arch = "x86_64")]
/// Debug I/O port, see:
/// https://www.intel.com/content/www/us/en/support/articles/000005500/boards-and-kits.html
///
/// Since we're not a physical platform, we can freely assign code ranges for
/// debugging specific parts of our virtual platform.
pub enum DebugIoPortRange {
Firmware,
Bootloader,
Kernel,
Userspace,
Custom,
}
#[cfg(target_arch = "x86_64")]
impl DebugIoPortRange {
fn from_u8(value: u8) -> DebugIoPortRange {
match value {
0x00..=0x1f => DebugIoPortRange::Firmware,
0x20..=0x3f => DebugIoPortRange::Bootloader,
0x40..=0x5f => DebugIoPortRange::Kernel,
0x60..=0x7f => DebugIoPortRange::Userspace,
_ => DebugIoPortRange::Custom,
}
}
}
#[cfg(target_arch = "x86_64")]
impl fmt::Display for DebugIoPortRange {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
DebugIoPortRange::Firmware => write!(f, "{}: Firmware", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Bootloader => write!(f, "{}: Bootloader", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Kernel => write!(f, "{}: Kernel", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Userspace => write!(f, "{}: Userspace", DEBUG_IOPORT_PREFIX),
DebugIoPortRange::Custom => write!(f, "{}: Custom", DEBUG_IOPORT_PREFIX),
}
}
}
struct VmOps {
memory: GuestMemoryAtomic<GuestMemoryMmap>,
#[cfg(target_arch = "x86_64")]
io_bus: Arc<Bus>,
mmio_bus: Arc<Bus>,
#[cfg(target_arch = "x86_64")]
timestamp: std::time::Instant,
}
impl VmOps {
#[cfg(target_arch = "x86_64")]
// Log debug io port codes.
fn log_debug_ioport(&self, code: u8) {
let elapsed = self.timestamp.elapsed();
debug!(
"[{} code 0x{:x}] {}.{:>06} seconds",
DebugIoPortRange::from_u8(code),
code,
elapsed.as_secs(),
elapsed.as_micros()
);
}
}
impl VmmOps for VmOps {
fn guest_mem_write(&self, buf: &[u8], gpa: u64) -> hypervisor::vm::Result<usize> {
self.memory
.memory()
.write(buf, GuestAddress(gpa))
.map_err(|e| HypervisorVmError::GuestMemWrite(e.into()))
}
fn guest_mem_read(&self, buf: &mut [u8], gpa: u64) -> hypervisor::vm::Result<usize> {
self.memory
.memory()
.read(buf, GuestAddress(gpa))
.map_err(|e| HypervisorVmError::GuestMemRead(e.into()))
}
fn mmio_read(&self, addr: u64, data: &mut [u8]) -> hypervisor::vm::Result<()> {
if let Err(e) = self.mmio_bus.read(addr, data) {
if let vm_device::BusError::MissingAddressRange = e {
warn!("Guest MMIO read to unregistered address 0x{:x}", addr);
}
}
Ok(())
}
fn mmio_write(&self, addr: u64, data: &[u8]) -> hypervisor::vm::Result<()> {
if let Err(e) = self.mmio_bus.write(addr, data) {
if let vm_device::BusError::MissingAddressRange = e {
warn!("Guest MMIO write to unregistered address 0x{:x}", addr);
}
}
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn pio_read(&self, addr: u64, data: &mut [u8]) -> hypervisor::vm::Result<()> {
if let Err(e) = self.io_bus.read(addr, data) {
if let vm_device::BusError::MissingAddressRange = e {
warn!("Guest PIO read to unregistered address 0x{:x}", addr);
}
}
Ok(())
}
#[cfg(target_arch = "x86_64")]
fn pio_write(&self, addr: u64, data: &[u8]) -> hypervisor::vm::Result<()> {
if addr == DEBUG_IOPORT as u64 && data.len() == 1 {
self.log_debug_ioport(data[0]);
}
if let Err(e) = self.io_bus.write(addr, data) {
if let vm_device::BusError::MissingAddressRange = e {
warn!("Guest PIO write to unregistered address 0x{:x}", addr);
}
}
Ok(())
}
}
pub fn physical_bits(max_phys_bits: Option<u8>) -> u8 {
let host_phys_bits = get_host_cpu_phys_bits();
cmp::min(host_phys_bits, max_phys_bits.unwrap_or(host_phys_bits))
}
pub struct Vm {
kernel: File,
initramfs: Option<File>,
threads: Vec<thread::JoinHandle<()>>,
device_manager: Arc<Mutex<DeviceManager>>,
config: Arc<Mutex<VmConfig>>,
on_tty: bool,
signals: Option<Signals>,
state: RwLock<VmState>,
cpu_manager: Arc<Mutex<cpu::CpuManager>>,
memory_manager: Arc<Mutex<MemoryManager>>,
#[cfg_attr(not(feature = "kvm"), allow(dead_code))]
// The hypervisor abstracted virtual machine.
vm: Arc<dyn hypervisor::Vm>,
#[cfg(target_arch = "x86_64")]
saved_clock: Option<hypervisor::ClockData>,
#[cfg(feature = "acpi")]
numa_nodes: NumaNodes,
seccomp_action: SeccompAction,
exit_evt: EventFd,
}
impl Vm {
#[allow(clippy::too_many_arguments)]
fn new_from_memory_manager(
config: Arc<Mutex<VmConfig>>,
memory_manager: Arc<Mutex<MemoryManager>>,
vm: Arc<dyn hypervisor::Vm>,
exit_evt: EventFd,
reset_evt: EventFd,
seccomp_action: &SeccompAction,
hypervisor: Arc<dyn hypervisor::Hypervisor>,
_saved_clock: Option<hypervisor::ClockData>,
) -> Result<Self> {
config
.lock()
.unwrap()
.validate()
.map_err(Error::ConfigValidation)?;
// Create NUMA nodes based on NumaConfig.
#[cfg(feature = "acpi")]
let numa_nodes =
Self::create_numa_nodes(config.lock().unwrap().numa.clone(), &memory_manager)?;
let device_manager = DeviceManager::new(
vm.clone(),
config.clone(),
memory_manager.clone(),
&exit_evt,
&reset_evt,
seccomp_action.clone(),
#[cfg(feature = "acpi")]
numa_nodes.clone(),
)
.map_err(Error::DeviceManager)?;
let memory = memory_manager.lock().unwrap().guest_memory();
#[cfg(target_arch = "x86_64")]
let io_bus = Arc::clone(device_manager.lock().unwrap().io_bus());
let mmio_bus = Arc::clone(device_manager.lock().unwrap().mmio_bus());
// Create the VmOps structure, which implements the VmmOps trait.
// And send it to the hypervisor.
let vm_ops = Box::new(VmOps {
memory,
#[cfg(target_arch = "x86_64")]
io_bus,
mmio_bus,
#[cfg(target_arch = "x86_64")]
timestamp: std::time::Instant::now(),
});
vm.set_vmmops(vm_ops).map_err(Error::SetVmmOpsInterface)?;
let exit_evt_clone = exit_evt.try_clone().map_err(Error::EventFdClone)?;
let cpu_manager = cpu::CpuManager::new(
&config.lock().unwrap().cpus.clone(),
&device_manager,
&memory_manager,
vm.clone(),
exit_evt_clone,
reset_evt,
hypervisor,
seccomp_action.clone(),
)
.map_err(Error::CpuManager)?;
let on_tty = unsafe { libc::isatty(libc::STDIN_FILENO as i32) } != 0;
let kernel = File::open(&config.lock().unwrap().kernel.as_ref().unwrap().path)
.map_err(Error::KernelFile)?;
let initramfs = config
.lock()
.unwrap()
.initramfs
.as_ref()
.map(|i| File::open(&i.path))
.transpose()
.map_err(Error::InitramfsFile)?;
Ok(Vm {
kernel,
initramfs,
device_manager,
config,
on_tty,
threads: Vec::with_capacity(1),
signals: None,
state: RwLock::new(VmState::Created),
cpu_manager,
memory_manager,
vm,
#[cfg(target_arch = "x86_64")]
saved_clock: _saved_clock,
#[cfg(feature = "acpi")]
numa_nodes,
seccomp_action: seccomp_action.clone(),
exit_evt,
})
}
#[cfg(feature = "acpi")]
fn create_numa_nodes(
configs: Option<Vec<NumaConfig>>,
memory_manager: &Arc<Mutex<MemoryManager>>,
) -> Result<NumaNodes> {
let mm = memory_manager.lock().unwrap();
let mm_zones = mm.memory_zones();
let mut numa_nodes = BTreeMap::new();
if let Some(configs) = &configs {
let node_id_list: Vec<u32> = configs.iter().map(|cfg| cfg.guest_numa_id).collect();
for config in configs.iter() {
if numa_nodes.contains_key(&config.guest_numa_id) {
error!("Can't define twice the same NUMA node");
return Err(Error::InvalidNumaConfig);
}
let mut node = NumaNode::default();
if let Some(memory_zones) = &config.memory_zones {
for memory_zone in memory_zones.iter() {
if let Some(mm_zone) = mm_zones.get(memory_zone) {
node.memory_regions.extend(mm_zone.regions().clone());
if let Some(virtiomem_zone) = mm_zone.virtio_mem_zone() {
node.hotplug_regions.push(virtiomem_zone.region().clone());
}
node.memory_zones.push(memory_zone.clone());
} else {
error!("Unknown memory zone '{}'", memory_zone);
return Err(Error::InvalidNumaConfig);
}
}
}
if let Some(cpus) = &config.cpus {
node.cpus.extend(cpus);
}
if let Some(distances) = &config.distances {
for distance in distances.iter() {
let dest = distance.destination;
let dist = distance.distance;
if !node_id_list.contains(&dest) {
error!("Unknown destination NUMA node {}", dest);
return Err(Error::InvalidNumaConfig);
}
if node.distances.contains_key(&dest) {
error!("Destination NUMA node {} has been already set", dest);
return Err(Error::InvalidNumaConfig);
}
node.distances.insert(dest, dist);
}
}
numa_nodes.insert(config.guest_numa_id, node);
}
}
Ok(numa_nodes)
}
pub fn new(
config: Arc<Mutex<VmConfig>>,
exit_evt: EventFd,
reset_evt: EventFd,
seccomp_action: &SeccompAction,
hypervisor: Arc<dyn hypervisor::Hypervisor>,
) -> Result<Self> {
#[cfg(target_arch = "x86_64")]
hypervisor.check_required_extensions().unwrap();
let vm = hypervisor.create_vm().unwrap();
#[cfg(target_arch = "x86_64")]
vm.enable_split_irq().unwrap();
let phys_bits = physical_bits(config.lock().unwrap().cpus.max_phys_bits);
let memory_manager = MemoryManager::new(
vm.clone(),
&config.lock().unwrap().memory.clone(),
false,
phys_bits,
)
.map_err(Error::MemoryManager)?;
#[cfg(target_arch = "x86_64")]
{
if let Some(sgx_epc_config) = config.lock().unwrap().sgx_epc.clone() {
memory_manager
.lock()
.unwrap()
.setup_sgx(sgx_epc_config)
.map_err(Error::MemoryManager)?;
}
}
let new_vm = Vm::new_from_memory_manager(
config,
memory_manager,
vm,
exit_evt,
reset_evt,
seccomp_action,
hypervisor,
None,
)?;
// The device manager must create the devices from here as it is part
// of the regular code path creating everything from scratch.
new_vm
.device_manager
.lock()
.unwrap()
.create_devices()
.map_err(Error::DeviceManager)?;
Ok(new_vm)
}
#[allow(clippy::too_many_arguments)]
pub fn new_from_snapshot(
snapshot: &Snapshot,
exit_evt: EventFd,
reset_evt: EventFd,
source_url: Option<&str>,
prefault: bool,
seccomp_action: &SeccompAction,
hypervisor: Arc<dyn hypervisor::Hypervisor>,
) -> Result<Self> {
#[cfg(target_arch = "x86_64")]
hypervisor.check_required_extensions().unwrap();
let vm = hypervisor.create_vm().unwrap();
#[cfg(target_arch = "x86_64")]
vm.enable_split_irq().unwrap();
let vm_snapshot = get_vm_snapshot(snapshot).map_err(Error::Restore)?;
let config = vm_snapshot.config;
if let Some(state) = vm_snapshot.state {
vm.set_state(state)
.map_err(|e| Error::Restore(MigratableError::Restore(e.into())))?;
}
let memory_manager = if let Some(memory_manager_snapshot) =
snapshot.snapshots.get(MEMORY_MANAGER_SNAPSHOT_ID)
{
let phys_bits = physical_bits(config.lock().unwrap().cpus.max_phys_bits);
MemoryManager::new_from_snapshot(
memory_manager_snapshot,
vm.clone(),
&config.lock().unwrap().memory.clone(),
source_url,
prefault,
phys_bits,
)
.map_err(Error::MemoryManager)?
} else {
return Err(Error::Restore(MigratableError::Restore(anyhow!(
"Missing memory manager snapshot"
))));
};
Vm::new_from_memory_manager(
config,
memory_manager,
vm,
exit_evt,
reset_evt,
seccomp_action,
hypervisor,
#[cfg(target_arch = "x86_64")]
vm_snapshot.clock,
#[cfg(target_arch = "aarch64")]
None,
)
}
fn load_initramfs(&mut self, guest_mem: &GuestMemoryMmap) -> Result<arch::InitramfsConfig> {
let mut initramfs = self.initramfs.as_ref().unwrap();
let size: usize = initramfs
.seek(SeekFrom::End(0))
.map_err(|_| Error::InitramfsLoad)?
.try_into()
.unwrap();
initramfs
.seek(SeekFrom::Start(0))
.map_err(|_| Error::InitramfsLoad)?;
let address =
arch::initramfs_load_addr(guest_mem, size).map_err(|_| Error::InitramfsLoad)?;
let address = GuestAddress(address);
guest_mem
.read_from(address, &mut initramfs, size)
.map_err(|_| Error::InitramfsLoad)?;
Ok(arch::InitramfsConfig { address, size })
}
fn get_cmdline(&mut self) -> Result<CString> {
let mut cmdline = Cmdline::new(arch::CMDLINE_MAX_SIZE);
cmdline
.insert_str(self.config.lock().unwrap().cmdline.args.clone())
.map_err(Error::CmdLineInsertStr)?;
for entry in self.device_manager.lock().unwrap().cmdline_additions() {
cmdline.insert_str(entry).map_err(Error::CmdLineInsertStr)?;
}
Ok(CString::new(cmdline).map_err(Error::CmdLineCString)?)
}
#[cfg(target_arch = "aarch64")]
fn load_kernel(&mut self) -> Result<EntryPoint> {
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
let mem = guest_memory.memory();
let entry_addr = match linux_loader::loader::pe::PE::load(
mem.deref(),
Some(GuestAddress(arch::get_kernel_start())),
&mut self.kernel,
None,
) {
Ok(entry_addr) => entry_addr,
Err(e) => {
return Err(Error::KernelLoad(e));
}
};
let entry_point_addr: GuestAddress = entry_addr.kernel_load;
Ok(EntryPoint {
entry_addr: entry_point_addr,
})
}
#[cfg(target_arch = "x86_64")]
fn load_kernel(&mut self) -> Result<EntryPoint> {
let cmdline_cstring = self.get_cmdline()?;
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
let mem = guest_memory.memory();
let entry_addr = match linux_loader::loader::elf::Elf::load(
mem.deref(),
None,
&mut self.kernel,
Some(arch::layout::HIGH_RAM_START),
) {
Ok(entry_addr) => entry_addr,
Err(linux_loader::loader::Error::Elf(InvalidElfMagicNumber)) => {
linux_loader::loader::bzimage::BzImage::load(
mem.deref(),
None,
&mut self.kernel,
Some(arch::layout::HIGH_RAM_START),
)
.map_err(Error::KernelLoad)?
}
Err(e) => {
return Err(Error::KernelLoad(e));
}
};
linux_loader::loader::load_cmdline(
mem.deref(),
arch::layout::CMDLINE_START,
&cmdline_cstring,
)
.map_err(Error::LoadCmdLine)?;
if entry_addr.setup_header.is_some() {
let load_addr = entry_addr
.kernel_load
.raw_value()
.checked_add(KERNEL_64BIT_ENTRY_OFFSET)
.ok_or(Error::MemOverflow)?;
Ok(EntryPoint {
entry_addr: GuestAddress(load_addr),
protocol: BootProtocol::LinuxBoot,
setup_header: entry_addr.setup_header,
})
} else {
let entry_point_addr: GuestAddress;
let boot_prot: BootProtocol;
if let PvhEntryPresent(pvh_entry_addr) = entry_addr.pvh_boot_cap {
// Use the PVH kernel entry point to boot the guest
entry_point_addr = pvh_entry_addr;
boot_prot = BootProtocol::PvhBoot;
} else {
// Use the Linux 64-bit boot protocol
entry_point_addr = entry_addr.kernel_load;
boot_prot = BootProtocol::LinuxBoot;
}
Ok(EntryPoint {
entry_addr: entry_point_addr,
protocol: boot_prot,
setup_header: None,
})
}
}
#[cfg(target_arch = "x86_64")]
fn configure_system(&mut self, entry_addr: EntryPoint) -> Result<()> {
let cmdline_cstring = self.get_cmdline()?;
let mem = self.memory_manager.lock().unwrap().boot_guest_memory();
let initramfs_config = match self.initramfs {
Some(_) => Some(self.load_initramfs(&mem)?),
None => None,
};
let boot_vcpus = self.cpu_manager.lock().unwrap().boot_vcpus();
#[allow(unused_mut, unused_assignments)]
let mut rsdp_addr: Option<GuestAddress> = None;
#[cfg(feature = "acpi")]
{
rsdp_addr = Some(crate::acpi::create_acpi_tables(
&mem,
&self.device_manager,
&self.cpu_manager,
&self.memory_manager,
&self.numa_nodes,
));
}
let sgx_epc_region = self
.memory_manager
.lock()
.unwrap()
.sgx_epc_region()
.as_ref()
.cloned();
match entry_addr.setup_header {
Some(hdr) => {
arch::configure_system(
&mem,
arch::layout::CMDLINE_START,
cmdline_cstring.to_bytes().len() + 1,
&initramfs_config,
boot_vcpus,
Some(hdr),
rsdp_addr,
BootProtocol::LinuxBoot,
sgx_epc_region,
)
.map_err(Error::ConfigureSystem)?;
}
None => {
arch::configure_system(
&mem,
arch::layout::CMDLINE_START,
cmdline_cstring.to_bytes().len() + 1,
&initramfs_config,
boot_vcpus,
None,
rsdp_addr,
entry_addr.protocol,
sgx_epc_region,
)
.map_err(Error::ConfigureSystem)?;
}
}
Ok(())
}
#[cfg(target_arch = "aarch64")]
fn configure_system(&mut self, _entry_addr: EntryPoint) -> Result<()> {
let cmdline_cstring = self.get_cmdline()?;
let vcpu_mpidrs = self.cpu_manager.lock().unwrap().get_mpidrs();
let mem = self.memory_manager.lock().unwrap().boot_guest_memory();
let initramfs_config = match self.initramfs {
Some(_) => Some(self.load_initramfs(&mem)?),
None => None,
};
let device_info = &self
.device_manager
.lock()
.unwrap()
.get_device_info()
.clone();
let pci_space_start: GuestAddress = self
.memory_manager
.lock()
.as_ref()
.unwrap()
.start_of_device_area();
let pci_space_end: GuestAddress = self
.memory_manager
.lock()
.as_ref()
.unwrap()
.end_of_device_area();
let pci_space_size = pci_space_end
.checked_offset_from(pci_space_start)
.ok_or(Error::MemOverflow)?
+ 1;
let pci_space = (pci_space_start.0, pci_space_size);
// Call `configure_system` and pass the GIC devices out, so that
// we can register the GIC device to the device manager.
let gic_device = arch::configure_system(
&self.memory_manager.lock().as_ref().unwrap().vm,
&mem,
&cmdline_cstring,
self.cpu_manager.lock().unwrap().boot_vcpus() as u64,
vcpu_mpidrs,
device_info,
&initramfs_config,
&pci_space,
)
.map_err(Error::ConfigureSystem)?;
// Update the GIC entity in device manager
self.device_manager
.lock()
.unwrap()
.set_gic_device_entity(Arc::new(Mutex::new(gic_device)));
self.device_manager
.lock()
.unwrap()
.enable_interrupt_controller()
.map_err(Error::EnableInterruptController)?;
Ok(())
}
pub fn shutdown(&mut self) -> Result<()> {
let mut state = self.state.try_write().map_err(|_| Error::PoisonedState)?;
let new_state = VmState::Shutdown;
state.valid_transition(new_state)?;
if self.on_tty {
// Don't forget to set the terminal in canonical mode
// before to exit.
io::stdin()
.lock()
.set_canon_mode()
.map_err(Error::SetTerminalCanon)?;
}
// Trigger the termination of the signal_handler thread
if let Some(signals) = self.signals.take() {
signals.close();
}
// Wake up the DeviceManager threads so they will get terminated cleanly
self.device_manager
.lock()
.unwrap()
.resume()
.map_err(Error::Resume)?;
self.cpu_manager
.lock()
.unwrap()
.shutdown()
.map_err(Error::CpuManager)?;
// Wait for all the threads to finish
for thread in self.threads.drain(..) {
thread.join().map_err(Error::ThreadCleanup)?
}
*state = new_state;
Ok(())
}
pub fn resize(
&mut self,
desired_vcpus: Option<u8>,
desired_memory: Option<u64>,
desired_balloon: Option<u64>,
) -> Result<()> {
if let Some(desired_vcpus) = desired_vcpus {
if self
.cpu_manager
.lock()
.unwrap()
.resize(desired_vcpus)
.map_err(Error::CpuManager)?
{
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::CPU_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
self.config.lock().unwrap().cpus.boot_vcpus = desired_vcpus;
}
if let Some(desired_memory) = desired_memory {
let new_region = self
.memory_manager
.lock()
.unwrap()
.resize(desired_memory)
.map_err(Error::MemoryManager)?;
let mut memory_config = &mut self.config.lock().unwrap().memory;
if let Some(new_region) = &new_region {
self.device_manager
.lock()
.unwrap()
.update_memory(&new_region)
.map_err(Error::DeviceManager)?;
match memory_config.hotplug_method {
HotplugMethod::Acpi => {
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::MEMORY_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
}
HotplugMethod::VirtioMem => {}
}
}
// We update the VM config regardless of the actual guest resize
// operation result (happened or not), so that if the VM reboots
// it will be running with the last configure memory size.
match memory_config.hotplug_method {
HotplugMethod::Acpi => memory_config.size = desired_memory,
HotplugMethod::VirtioMem => {
if desired_memory > memory_config.size {
memory_config.hotplugged_size = Some(desired_memory - memory_config.size);
} else {
memory_config.hotplugged_size = None;
}
}
}
}
if let Some(desired_balloon) = desired_balloon {
self.device_manager
.lock()
.unwrap()
.resize_balloon(desired_balloon)
.map_err(Error::DeviceManager)?;
// Update the configuration value for the balloon size to ensure
// a reboot would use the right value.
if let Some(balloon_config) = &mut self.config.lock().unwrap().balloon {
balloon_config.size = desired_balloon;
}
}
Ok(())
}
pub fn resize_zone(&mut self, id: String, desired_memory: u64) -> Result<()> {
let memory_config = &mut self.config.lock().unwrap().memory;
if let Some(zones) = &mut memory_config.zones {
for zone in zones.iter_mut() {
if zone.id == id {
if desired_memory >= zone.size {
let hotplugged_size = desired_memory - zone.size;
self.memory_manager
.lock()
.unwrap()
.resize_zone(&id, desired_memory - zone.size)
.map_err(Error::MemoryManager)?;
// We update the memory zone config regardless of the
// actual 'resize-zone' operation result (happened or
// not), so that if the VM reboots it will be running
// with the last configured memory zone size.
zone.hotplugged_size = Some(hotplugged_size);
return Ok(());
} else {
error!(
"Invalid to ask less ({}) than boot RAM ({}) for \
this memory zone",
desired_memory, zone.size,
);
return Err(Error::ResizeZone);
}
}
}
}
error!("Could not find the memory zone {} for the resize", id);
Err(Error::ResizeZone)
}
pub fn add_device(&mut self, mut _device_cfg: DeviceConfig) -> Result<PciDeviceInfo> {
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_device(&mut _device_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(devices) = config.devices.as_mut() {
devices.push(_device_cfg);
} else {
config.devices = Some(vec![_device_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn remove_device(&mut self, _id: String) -> Result<()> {
self.device_manager
.lock()
.unwrap()
.remove_device(_id.clone())
.map_err(Error::DeviceManager)?;
// Update VmConfig by removing the device. This is important to
// ensure the device would not be created in case of a reboot.
let mut config = self.config.lock().unwrap();
// Remove if VFIO device
if let Some(devices) = config.devices.as_mut() {
devices.retain(|dev| dev.id.as_ref() != Some(&_id));
}
// Remove if disk device
if let Some(disks) = config.disks.as_mut() {
disks.retain(|dev| dev.id.as_ref() != Some(&_id));
}
// Remove if net device
if let Some(net) = config.net.as_mut() {
net.retain(|dev| dev.id.as_ref() != Some(&_id));
}
// Remove if pmem device
if let Some(pmem) = config.pmem.as_mut() {
pmem.retain(|dev| dev.id.as_ref() != Some(&_id));
}
// Remove if vsock device
if let Some(vsock) = config.vsock.as_ref() {
if vsock.id.as_ref() == Some(&_id) {
config.vsock = None;
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(())
}
pub fn add_disk(&mut self, mut _disk_cfg: DiskConfig) -> Result<PciDeviceInfo> {
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_disk(&mut _disk_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(disks) = config.disks.as_mut() {
disks.push(_disk_cfg);
} else {
config.disks = Some(vec![_disk_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn add_fs(&mut self, mut _fs_cfg: FsConfig) -> Result<PciDeviceInfo> {
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_fs(&mut _fs_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(fs_config) = config.fs.as_mut() {
fs_config.push(_fs_cfg);
} else {
config.fs = Some(vec![_fs_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn add_pmem(&mut self, mut _pmem_cfg: PmemConfig) -> Result<PciDeviceInfo> {
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_pmem(&mut _pmem_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(pmem) = config.pmem.as_mut() {
pmem.push(_pmem_cfg);
} else {
config.pmem = Some(vec![_pmem_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn add_net(&mut self, mut _net_cfg: NetConfig) -> Result<PciDeviceInfo> {
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_net(&mut _net_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
if let Some(net) = config.net.as_mut() {
net.push(_net_cfg);
} else {
config.net = Some(vec![_net_cfg]);
}
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn add_vsock(&mut self, mut _vsock_cfg: VsockConfig) -> Result<PciDeviceInfo> {
if self.config.lock().unwrap().vsock.is_some() {
return Err(Error::TooManyVsockDevices);
}
let pci_device_info = self
.device_manager
.lock()
.unwrap()
.add_vsock(&mut _vsock_cfg)
.map_err(Error::DeviceManager)?;
// Update VmConfig by adding the new device. This is important to
// ensure the device would be created in case of a reboot.
{
let mut config = self.config.lock().unwrap();
config.vsock = Some(_vsock_cfg);
}
self.device_manager
.lock()
.unwrap()
.notify_hotplug(HotPlugNotificationFlags::PCI_DEVICES_CHANGED)
.map_err(Error::DeviceManager)?;
Ok(pci_device_info)
}
pub fn counters(&self) -> Result<HashMap<String, HashMap<&'static str, Wrapping<u64>>>> {
Ok(self.device_manager.lock().unwrap().counters())
}
fn os_signal_handler(
signals: Signals,
console_input_clone: Arc<Console>,
on_tty: bool,
exit_evt: EventFd,
) {
for signal in signals.forever() {
match signal {
SIGWINCH => {
let (col, row) = get_win_size();
console_input_clone.update_console_size(col, row);
}
SIGTERM | SIGINT => {
if on_tty {
io::stdin()
.lock()
.set_canon_mode()
.expect("failed to restore terminal mode");
}
if exit_evt.write(1).is_err() {
std::process::exit(1);
}
}
_ => (),
}
}
}
pub fn boot(&mut self) -> Result<()> {
let current_state = self.get_state()?;
if current_state == VmState::Paused {
return self.resume().map_err(Error::Resume);
}
let new_state = VmState::Running;
current_state.valid_transition(new_state)?;
let entry_point = self.load_kernel()?;
// create and configure vcpus
self.cpu_manager
.lock()
.unwrap()
.create_boot_vcpus(entry_point)
.map_err(Error::CpuManager)?;
self.configure_system(entry_point)?;
self.cpu_manager
.lock()
.unwrap()
.start_boot_vcpus()
.map_err(Error::CpuManager)?;
if self
.device_manager
.lock()
.unwrap()
.console()
.input_enabled()
{
let console = self.device_manager.lock().unwrap().console().clone();
let signals = Signals::new(&[SIGWINCH, SIGINT, SIGTERM]);
match signals {
Ok(signals) => {
self.signals = Some(signals.clone());
let exit_evt = self.exit_evt.try_clone().map_err(Error::EventFdClone)?;
let on_tty = self.on_tty;
let signal_handler_seccomp_filter =
get_seccomp_filter(&self.seccomp_action, Thread::SignalHandler)
.map_err(Error::CreateSeccompFilter)?;
self.threads.push(
thread::Builder::new()
.name("signal_handler".to_string())
.spawn(move || {
if let Err(e) = SeccompFilter::apply(signal_handler_seccomp_filter)
.map_err(Error::ApplySeccompFilter)
{
error!("Error applying seccomp filter: {:?}", e);
return;
}
Vm::os_signal_handler(signals, console, on_tty, exit_evt);
})
.map_err(Error::SignalHandlerSpawn)?,
);
}
Err(e) => error!("Signal not found {}", e),
}
if self.on_tty {
io::stdin()
.lock()
.set_raw_mode()
.map_err(Error::SetTerminalRaw)?;
}
}
let mut state = self.state.try_write().map_err(|_| Error::PoisonedState)?;
*state = new_state;
Ok(())
}
pub fn handle_stdin(&self) -> Result<()> {
let mut out = [0u8; 64];
let count = io::stdin()
.lock()
.read_raw(&mut out)
.map_err(Error::Console)?;
// Replace "\n" with "\r" to deal with Windows SAC (#1170)
if count == 1 && out[0] == 0x0a {
out[0] = 0x0d;
}
if self
.device_manager
.lock()
.unwrap()
.console()
.input_enabled()
{
self.device_manager
.lock()
.unwrap()
.console()
.queue_input_bytes(&out[..count])
.map_err(Error::Console)?;
}
Ok(())
}
/// Gets a thread-safe reference counted pointer to the VM configuration.
pub fn get_config(&self) -> Arc<Mutex<VmConfig>> {
Arc::clone(&self.config)
}
/// Get the VM state. Returns an error if the state is poisoned.
pub fn get_state(&self) -> Result<VmState> {
self.state
.try_read()
.map_err(|_| Error::PoisonedState)
.map(|state| *state)
}
#[cfg(target_arch = "aarch64")]
/// Add the vGIC section to the VM snapshot.
fn add_vgic_snapshot_section(
&self,
vm_snapshot: &mut Snapshot,
) -> std::result::Result<(), MigratableError> {
let saved_vcpu_states = self.cpu_manager.lock().unwrap().get_saved_states();
self.device_manager
.lock()
.unwrap()
.construct_gicr_typers(&saved_vcpu_states);
vm_snapshot.add_snapshot(
self.device_manager
.lock()
.unwrap()
.get_gic_device_entity()
.unwrap()
.lock()
.unwrap()
.as_any_concrete_mut()
.downcast_mut::<KvmGICv3>()
.unwrap()
.snapshot()?,
);
Ok(())
}
#[cfg(target_arch = "aarch64")]
/// Restore the vGIC from the VM snapshot and enable the interrupt controller routing.
fn restore_vgic_and_enable_interrupt(
&self,
vm_snapshot: &Snapshot,
) -> std::result::Result<(), MigratableError> {
let saved_vcpu_states = self.cpu_manager.lock().unwrap().get_saved_states();
// The number of vCPUs is the same as the number of saved vCPU states.
let vcpu_numbers = saved_vcpu_states.len();
// Creating a GIC device here, as the GIC will not be created when
// restoring the device manager. Note that currently only the bare GICv3
// without ITS is supported.
let gic_device = create_gic(&self.vm, vcpu_numbers.try_into().unwrap())
.map_err(|e| MigratableError::Restore(anyhow!("Could not create GIC: {:#?}", e)))?;
// Update the GIC entity in device manager
self.device_manager
.lock()
.unwrap()
.set_gic_device_entity(Arc::new(Mutex::new(gic_device)));
// Here we prepare the GICR_TYPER registers from the restored vCPU states.
self.device_manager
.lock()
.unwrap()
.construct_gicr_typers(&saved_vcpu_states);
// Restore GIC states.
if let Some(gic_v3_snapshot) = vm_snapshot.snapshots.get(GIC_V3_SNAPSHOT_ID) {
self.device_manager
.lock()
.unwrap()
.get_gic_device_entity()
.unwrap()
.lock()
.unwrap()
.as_any_concrete_mut()
.downcast_mut::<KvmGICv3>()
.unwrap()
.restore(*gic_v3_snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!("Missing GICv3 snapshot")));
}
self.device_manager
.lock()
.unwrap()
.enable_interrupt_controller()
.map_err(|e| {
MigratableError::Restore(anyhow!(
"Could not enable interrupt controller routing: {:#?}",
e
))
})?;
Ok(())
}
/// Gets the actual size of the balloon.
pub fn balloon_size(&self) -> u64 {
self.device_manager.lock().unwrap().balloon_size()
}
pub fn receive_memory_regions<F>(
&mut self,
ranges: &MemoryRangeTable,
fd: &mut F,
) -> std::result::Result<(), MigratableError>
where
F: Read,
{
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
let mem = guest_memory.memory();
for range in ranges.regions() {
mem.read_exact_from(GuestAddress(range.gpa), fd, range.length as usize)
.map_err(|e| {
MigratableError::MigrateReceive(anyhow!(
"Error transferring memory to socket: {}",
e
))
})?;
}
Ok(())
}
pub fn send_memory_regions<F>(
&mut self,
ranges: &MemoryRangeTable,
fd: &mut F,
) -> std::result::Result<(), MigratableError>
where
F: Write,
{
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
let mem = guest_memory.memory();
for range in ranges.regions() {
mem.write_all_to(GuestAddress(range.gpa), fd, range.length as usize)
.map_err(|e| {
MigratableError::MigrateSend(anyhow!(
"Error transferring memory to socket: {}",
e
))
})?;
}
Ok(())
}
pub fn memory_range_table(&self) -> std::result::Result<MemoryRangeTable, MigratableError> {
let mut table = MemoryRangeTable::default();
let guest_memory = self.memory_manager.lock().as_ref().unwrap().guest_memory();
guest_memory.memory().with_regions_mut(|_, region| {
table.push(MemoryRange {
gpa: region.start_addr().raw_value(),
length: region.len() as u64,
});
Ok(())
})?;
Ok(table)
}
}
impl Pausable for Vm {
fn pause(&mut self) -> std::result::Result<(), MigratableError> {
let mut state = self
.state
.try_write()
.map_err(|e| MigratableError::Pause(anyhow!("Could not get VM state: {}", e)))?;
let new_state = VmState::Paused;
state
.valid_transition(new_state)
.map_err(|e| MigratableError::Pause(anyhow!("Invalid transition: {:?}", e)))?;
#[cfg(target_arch = "x86_64")]
{
let mut clock = self
.vm
.get_clock()
.map_err(|e| MigratableError::Pause(anyhow!("Could not get VM clock: {}", e)))?;
// Reset clock flags.
clock.flags = 0;
self.saved_clock = Some(clock);
}
self.cpu_manager.lock().unwrap().pause()?;
self.device_manager.lock().unwrap().pause()?;
*state = new_state;
Ok(())
}
fn resume(&mut self) -> std::result::Result<(), MigratableError> {
let mut state = self
.state
.try_write()
.map_err(|e| MigratableError::Resume(anyhow!("Could not get VM state: {}", e)))?;
let new_state = VmState::Running;
state
.valid_transition(new_state)
.map_err(|e| MigratableError::Resume(anyhow!("Invalid transition: {:?}", e)))?;
self.cpu_manager.lock().unwrap().resume()?;
#[cfg(target_arch = "x86_64")]
{
if let Some(clock) = &self.saved_clock {
self.vm.set_clock(clock).map_err(|e| {
MigratableError::Resume(anyhow!("Could not set VM clock: {}", e))
})?;
}
}
self.device_manager.lock().unwrap().resume()?;
// And we're back to the Running state.
*state = new_state;
Ok(())
}
}
#[derive(Serialize, Deserialize)]
pub struct VmSnapshot {
pub config: Arc<Mutex<VmConfig>>,
#[cfg(target_arch = "x86_64")]
pub clock: Option<hypervisor::ClockData>,
pub state: Option<hypervisor::VmState>,
}
pub const VM_SNAPSHOT_ID: &str = "vm";
impl Snapshottable for Vm {
fn id(&self) -> String {
VM_SNAPSHOT_ID.to_string()
}
fn snapshot(&mut self) -> std::result::Result<Snapshot, MigratableError> {
let current_state = self.get_state().unwrap();
if current_state != VmState::Paused {
return Err(MigratableError::Snapshot(anyhow!(
"Trying to snapshot while VM is running"
)));
}
let mut vm_snapshot = Snapshot::new(VM_SNAPSHOT_ID);
let vm_state = self
.vm
.state()
.map_err(|e| MigratableError::Snapshot(e.into()))?;
let vm_snapshot_data = serde_json::to_vec(&VmSnapshot {
config: self.get_config(),
#[cfg(target_arch = "x86_64")]
clock: self.saved_clock,
state: Some(vm_state),
})
.map_err(|e| MigratableError::Snapshot(e.into()))?;
vm_snapshot.add_snapshot(self.cpu_manager.lock().unwrap().snapshot()?);
vm_snapshot.add_snapshot(self.memory_manager.lock().unwrap().snapshot()?);
#[cfg(target_arch = "aarch64")]
self.add_vgic_snapshot_section(&mut vm_snapshot)
.map_err(|e| MigratableError::Snapshot(e.into()))?;
vm_snapshot.add_snapshot(self.device_manager.lock().unwrap().snapshot()?);
vm_snapshot.add_data_section(SnapshotDataSection {
id: format!("{}-section", VM_SNAPSHOT_ID),
snapshot: vm_snapshot_data,
});
Ok(vm_snapshot)
}
fn restore(&mut self, snapshot: Snapshot) -> std::result::Result<(), MigratableError> {
let current_state = self
.get_state()
.map_err(|e| MigratableError::Restore(anyhow!("Could not get VM state: {:#?}", e)))?;
let new_state = VmState::Paused;
current_state.valid_transition(new_state).map_err(|e| {
MigratableError::Restore(anyhow!("Could not restore VM state: {:#?}", e))
})?;
if let Some(memory_manager_snapshot) = snapshot.snapshots.get(MEMORY_MANAGER_SNAPSHOT_ID) {
self.memory_manager
.lock()
.unwrap()
.restore(*memory_manager_snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing memory manager snapshot"
)));
}
if let Some(cpu_manager_snapshot) = snapshot.snapshots.get(CPU_MANAGER_SNAPSHOT_ID) {
self.cpu_manager
.lock()
.unwrap()
.restore(*cpu_manager_snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing CPU manager snapshot"
)));
}
if let Some(device_manager_snapshot) = snapshot.snapshots.get(DEVICE_MANAGER_SNAPSHOT_ID) {
self.device_manager
.lock()
.unwrap()
.restore(*device_manager_snapshot.clone())?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing device manager snapshot"
)));
}
#[cfg(target_arch = "aarch64")]
self.restore_vgic_and_enable_interrupt(&snapshot)?;
// Now we can start all vCPUs from here.
self.cpu_manager
.lock()
.unwrap()
.start_restored_vcpus()
.map_err(|e| {
MigratableError::Restore(anyhow!("Cannot start restored vCPUs: {:#?}", e))
})?;
if self
.device_manager
.lock()
.unwrap()
.console()
.input_enabled()
{
let console = self.device_manager.lock().unwrap().console().clone();
let signals = Signals::new(&[SIGWINCH, SIGINT, SIGTERM]);
match signals {
Ok(signals) => {
self.signals = Some(signals.clone());
let on_tty = self.on_tty;
let signal_handler_seccomp_filter =
get_seccomp_filter(&self.seccomp_action, Thread::SignalHandler).map_err(
|e| {
MigratableError::Restore(anyhow!(
"Could not create seccomp filter: {:#?}",
Error::CreateSeccompFilter(e)
))
},
)?;
let exit_evt = self.exit_evt.try_clone().map_err(|e| {
MigratableError::Restore(anyhow!("Could not clone exit event fd: {:?}", e))
})?;
self.threads.push(
thread::Builder::new()
.name("signal_handler".to_string())
.spawn(move || {
if let Err(e) = SeccompFilter::apply(signal_handler_seccomp_filter)
.map_err(Error::ApplySeccompFilter)
{
error!("Error applying seccomp filter: {:?}", e);
return;
}
Vm::os_signal_handler(signals, console, on_tty, exit_evt)
})
.map_err(|e| {
MigratableError::Restore(anyhow!(
"Could not start console signal thread: {:#?}",
e
))
})?,
);
}
Err(e) => error!("Signal not found {}", e),
}
if self.on_tty {
io::stdin().lock().set_raw_mode().map_err(|e| {
MigratableError::Restore(anyhow!(
"Could not set terminal in raw mode: {:#?}",
e
))
})?;
}
}
let mut state = self
.state
.try_write()
.map_err(|e| MigratableError::Restore(anyhow!("Could not set VM state: {:#?}", e)))?;
*state = new_state;
Ok(())
}
}
impl Transportable for Vm {
fn send(
&self,
snapshot: &Snapshot,
destination_url: &str,
) -> std::result::Result<(), MigratableError> {
let url = Url::parse(destination_url).map_err(|e| {
MigratableError::MigrateSend(anyhow!("Could not parse destination URL: {}", e))
})?;
match url.scheme() {
"file" => {
let mut vm_snapshot_path = url_to_path(&url)?;
vm_snapshot_path.push(VM_SNAPSHOT_FILE);
// Create the snapshot file
let mut vm_snapshot_file = OpenOptions::new()
.read(true)
.write(true)
.create_new(true)
.open(vm_snapshot_path)
.map_err(|e| MigratableError::MigrateSend(e.into()))?;
// Serialize and write the snapshot
let vm_snapshot = serde_json::to_vec(snapshot)
.map_err(|e| MigratableError::MigrateSend(e.into()))?;
vm_snapshot_file
.write(&vm_snapshot)
.map_err(|e| MigratableError::MigrateSend(e.into()))?;
// Tell the memory manager to also send/write its own snapshot.
if let Some(memory_manager_snapshot) =
snapshot.snapshots.get(MEMORY_MANAGER_SNAPSHOT_ID)
{
self.memory_manager
.lock()
.unwrap()
.send(&*memory_manager_snapshot.clone(), destination_url)?;
} else {
return Err(MigratableError::Restore(anyhow!(
"Missing memory manager snapshot"
)));
}
}
_ => {
return Err(MigratableError::MigrateSend(anyhow!(
"Unsupported VM transport URL scheme: {}",
url.scheme()
)))
}
}
Ok(())
}
}
impl Migratable for Vm {}
#[cfg(target_arch = "x86_64")]
#[cfg(test)]
mod tests {
use super::*;
fn test_vm_state_transitions(state: VmState) {
match state {
VmState::Created => {
// Check the transitions from Created
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_err());
assert!(state.valid_transition(VmState::Paused).is_ok());
}
VmState::Running => {
// Check the transitions from Running
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_err());
assert!(state.valid_transition(VmState::Shutdown).is_ok());
assert!(state.valid_transition(VmState::Paused).is_ok());
}
VmState::Shutdown => {
// Check the transitions from Shutdown
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_err());
assert!(state.valid_transition(VmState::Paused).is_err());
}
VmState::Paused => {
// Check the transitions from Paused
assert!(state.valid_transition(VmState::Created).is_err());
assert!(state.valid_transition(VmState::Running).is_ok());
assert!(state.valid_transition(VmState::Shutdown).is_ok());
assert!(state.valid_transition(VmState::Paused).is_err());
}
}
}
#[test]
fn test_vm_created_transitions() {
test_vm_state_transitions(VmState::Created);
}
#[test]
fn test_vm_running_transitions() {
test_vm_state_transitions(VmState::Running);
}
#[test]
fn test_vm_shutdown_transitions() {
test_vm_state_transitions(VmState::Shutdown);
}
#[test]
fn test_vm_paused_transitions() {
test_vm_state_transitions(VmState::Paused);
}
}
#[cfg(target_arch = "aarch64")]
#[cfg(test)]
mod tests {
use super::*;
use arch::aarch64::fdt::create_fdt;
use arch::aarch64::gic::kvm::create_gic;
use arch::aarch64::{layout, DeviceInfoForFDT};
use arch::DeviceType;
use vm_memory::{GuestAddress, GuestMemoryMmap};
const LEN: u64 = 4096;
#[derive(Clone, Debug)]
pub struct MMIODeviceInfo {
addr: u64,
irq: u32,
}
impl DeviceInfoForFDT for MMIODeviceInfo {
fn addr(&self) -> u64 {
self.addr
}
fn irq(&self) -> u32 {
self.irq
}
fn length(&self) -> u64 {
LEN
}
}
#[test]
fn test_create_fdt_with_devices() {
let mut regions = Vec::new();
regions.push((
GuestAddress(layout::RAM_64BIT_START),
(layout::FDT_MAX_SIZE + 0x1000) as usize,
));
let mem = GuestMemoryMmap::from_ranges(&regions).expect("Cannot initialize memory");
let dev_info: HashMap<(DeviceType, std::string::String), MMIODeviceInfo> = [
(
(DeviceType::Serial, DeviceType::Serial.to_string()),
MMIODeviceInfo { addr: 0x00, irq: 1 },
),
(
(DeviceType::Virtio(1), "virtio".to_string()),
MMIODeviceInfo {
addr: 0x00 + LEN,
irq: 2,
},
),
(
(DeviceType::RTC, "rtc".to_string()),
MMIODeviceInfo {
addr: 0x00 + 2 * LEN,
irq: 3,
},
),
]
.iter()
.cloned()
.collect();
let hv = hypervisor::new().unwrap();
let vm = hv.create_vm().unwrap();
let gic = create_gic(&vm, 1).unwrap();
assert!(create_fdt(
&mem,
&CString::new("console=tty0").unwrap(),
vec![0],
&dev_info,
&*gic,
&None,
&(0x1_0000_0000, 0x1_0000),
)
.is_ok())
}
}
#[cfg(target_arch = "x86_64")]
#[test]
pub fn test_vm() {
use hypervisor::VmExit;
use vm_memory::{GuestMemory, GuestMemoryRegion};
// This example based on https://lwn.net/Articles/658511/
let code = [
0xba, 0xf8, 0x03, /* mov $0x3f8, %dx */
0x00, 0xd8, /* add %bl, %al */
0x04, b'0', /* add $'0', %al */
0xee, /* out %al, (%dx) */
0xb0, b'\n', /* mov $'\n', %al */
0xee, /* out %al, (%dx) */
0xf4, /* hlt */
];
let mem_size = 0x1000;
let load_addr = GuestAddress(0x1000);
let mem = GuestMemoryMmap::from_ranges(&[(load_addr, mem_size)]).unwrap();
let hv = hypervisor::new().unwrap();
let vm = hv.create_vm().expect("new VM creation failed");
mem.with_regions(|index, region| {
let mem_region = vm.make_user_memory_region(
index as u32,
region.start_addr().raw_value(),
region.len() as u64,
region.as_ptr() as u64,
false,
false,
);
vm.set_user_memory_region(mem_region)
})
.expect("Cannot configure guest memory");
mem.write_slice(&code, load_addr)
.expect("Writing code to memory failed");
let vcpu = vm.create_vcpu(0).expect("new Vcpu failed");
let mut vcpu_sregs = vcpu.get_sregs().expect("get sregs failed");
vcpu_sregs.cs.base = 0;
vcpu_sregs.cs.selector = 0;
vcpu.set_sregs(&vcpu_sregs).expect("set sregs failed");
let mut vcpu_regs = vcpu.get_regs().expect("get regs failed");
vcpu_regs.rip = 0x1000;
vcpu_regs.rax = 2;
vcpu_regs.rbx = 3;
vcpu_regs.rflags = 2;
vcpu.set_regs(&vcpu_regs).expect("set regs failed");
loop {
match vcpu.run().expect("run failed") {
VmExit::IoOut(addr, data) => {
println!(
"IO out -- addr: {:#x} data [{:?}]",
addr,
str::from_utf8(&data).unwrap()
);
}
VmExit::Reset => {
println!("HLT");
break;
}
r => panic!("unexpected exit reason: {:?}", r),
}
}
}