The pconfig feature was enabled in QEMU by accident in 3.1.0. All other
newer versions do not support it and it was removed from the
Icelake-Server CPU model in QEMU.
We don't normally change our CPU models even when QEMU does so to avoid
breaking migrations between different versions of libvirt. But we can
safely do so in this specific case. QEMU never supported enabling
pconfig so any domain which was able to start has pconfig disabled.
With a small compatibility hack which explicitly disables pconfig when
CPU model equals Icelake-Server in migratable domain definition, only
one migration scenario stays broken (and there's nothing we can do about
it): from any host to a host with libvirt < 5.10.0 and QEMU > 3.1.0.
https://bugzilla.redhat.com/show_bug.cgi?id=1749672
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
There should be a single space either side of operators. Inline
comments should have two spaces before the '#'
src/hyperv/hyperv_wmi_generator.py:130:45: E261 at least two spaces before inline comment
source += ' { "", "", 0 },\n' # null terminated
^
src/esx/esx_vi_generator.py:417:25: E221 multiple spaces before operator
FEATURE__DESERIALIZE = (1 << 6)
^
tests/cputestdata/cpu-cpuid.py:187:78: E225 missing whitespace around operator
f.write(" <msr index='0x%x' edx='0x%08x' eax='0x%08x'/>\n" %(
^
docs/apibuild.py:524:47: E226 missing whitespace around arithmetic operator
self.line = line[i+2:]
^
...more...
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Coding style expects 1 blank line between each method and 2 blank lines
before each class.
docs/apibuild.py:171:5: E303 too many blank lines (2)
def set_header(self, header):
^
docs/apibuild.py:230:1: E302 expected 2 blank lines, found 1
class index:
^
docs/apibuild.py:175:5: E301 expected 1 blank line, found 0
def set_module(self, module):
^
...more...
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
CVE-2018-12126, CVE-2018-12127, CVE-2018-12130, CVE-2019-11091
The bit is set when microcode provides the mechanism to invoke a flush
of various exploitable CPU buffers by invoking the VERW instruction.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
This patch adds an inline python code for reading MSR features. Since
reading MSRs is a privileged operation, we have to read them from
/dev/cpu/*/msr if it is readable (i.e., the script runs as root) or
fallback to using KVM ioctl which can be done by any user that can start
virtual machines.
The python code is inlined rather than provided in a separate script
because whenever there's an issue with proper detection of CPU features,
we ask the reporter to run cpu-gather.sh script to give us all data we
need to know about the host CPU. Asking them to run several scripts
would likely result in one of them being ignored or forgotten.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The parseMapFeature for parsing features from CPU map XML can be easily
generalized to support more feature types.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
Let's make sure the current CPUID specific code is only applied to CPUID
features.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
This will let us simplify the code since the dictionary keys will match
attribute names in various XMLs.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
leaf["eax"] & eax > 0 check works correctly only if there's at most 1
bit set in eax. Luckily that's been always the case, but fixing this
could save us from future surprises.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The function will have to deal with both CPUID and MSR features.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
We don't really need to parse CPU data from QEMU older than 2.9 (i.e.,
before query-cpu-model-expansion) at this point. But even if there's a
need to do so, we can always use an older version of this script to do
the conversion.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
Introduced in QEMU 3.1.0 by commit
c7a88b52f62b30c04158eeb07f73e3f72221b6a8
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
This fixes several CPUs which were incorrectly detected as
Skylake-Client.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
This fixes several CPUs which were incorrectly detected as a different
CPU model.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The signature computation code is not too complicated and it will likely
never change so testing it is not very important. We do it mostly for a
nice side effect of easily accessible signature numbers for all CPU
data files.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The tests/cputestdata/cpu-parse.sh would produce JSON files with QEMU
replies which wouldn't pass syntax-check. Let's fix this by not emitting
an extra new line after reformatting the JSON file.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The tests/cputestdata/cpu-parse.sh script has been broken since the
cpu_map.xml file was split into several XMLs.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
The feature was added to QEMU in 3.1.0 and it is currently blocking
migration, which is expected to change in the future. Luckily 3.1.0 is
new enough to give us migratability hints on each feature via
query-cpu-model-expension, which means we don't need to use the
"migratable" attribute on the CPU map XML.
The kernel calls this feature arch_capabilities and RHEL/CentOS 7.* use
arch-facilities. Apparently some CPU test files were gathered with the
RHEL version of QEMU. Let's update the test files to avoid possible
confusion about the correct naming.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Ján Tomko <jtomko@redhat.com>
QEMU commits:
e37a5c7fa4 (v2.12.0)
i386: Add Intel Processor Trace feature support
c2f193b538 (v2.7.0)
target-i386: Add support for UMIP and RDPID CPUID bits
aff9e6e46a (v2.12.0)
x86/cpu: Enable new SSE/AVX/AVX512 cpu features
f77543772d (v2.9.0)
x86: add AVX512_VPOPCNTDQ features
5131dc433d (v3.1.0)
i386: Add CPUID bit for PCONFIG
59a80a19ca (v3.1.0)
i386: Add CPUID bit for WBNOINVD
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Replace the print statement, that is only available in Py2, with a
print function that is available in both Py2 and Py3 and drop the
explicit python version in the shebang.
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Radostin Stoyanov <rstoyanov1@gmail.com>
PEP8 recommends not having spaces around = in a keyword argument or
a default parameter value.
https://www.python.org/dev/peps/pep-0008/#other-recommendations
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Radostin Stoyanov <rstoyanov1@gmail.com>
This is a variant of EPYC with indirect branch prediction protection.
The only difference between EPYC and EPYC-IBPB is the added "ibpb"
feature.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
This is a variant of Skylake-Server with indirect branch prediction
protection. The only difference between Skylake-Server and
Skylake-Server-IBRS is the added "spec-ctrl" feature.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
This is a variant of Skylake-Client with indirect branch prediction
protection. The only difference between Skylake-Client and
Skylake-Client-IBRS is the added "spec-ctrl" feature.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
This is a variant of Broadwell with indirect branch prediction
protection. The only difference between Broadwell and Broadwell-IBRS is
the added "spec-ctrl" feature.
The Broadwell-IBRS model in QEMU is a bit different since Broadwell got
several additional features since we added it in cpu_map.xml:
abm, arat, f16c, rdrand, vme, xsaveopt
Adding them only to the -IBRS variant would confuse our CPU detection
code.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
This is a variant of Haswell-noTSX with indirect branch prediction
protection. The only difference between Haswell-noTSX and
Haswell-noTSX-IBRS is the added "spec-ctrl" feature.
The Haswell-noTSX-IBRS model in QEMU is a bit different since
Haswell-noTSX got several additional features since we added it in
cpu_map.xml:
arat, abm, f16c, rdrand, vme, xsaveopt
Adding them only to the -IBRS variant would confuse our CPU detection
code.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The CPU contains the updated microcode for CVE-2017-5715.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The CPU contains the updated microcode for CVE-2017-5715.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The CPU contains the updated microcode for CVE-2017-5715.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The CPU contains the updated microcode for CVE-2017-5715.
The *-guest.xml and *-json.xml CPU definitions use Skylake-Client CPU
model rather than Broadwell. This is similar to Xeon-E5-2650-v4 and it
is caused by our CPU model selection code when no model matches the CPU
signature (family + model). We'd need to maintain a complete list of CPU
signatures for our CPU models to fix this.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The CPU contains the updated microcode for CVE-2017-5715.
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>
The cpuidMap in cpu-cpuid.py was created for converting old data files
(with QEMU's feature-words bits) to the new model-expansion based data.
When I added tests for CPU live update based on disabled/enabled feature
lists I shamelessly used the existing cpuidMap for generating the
*-{enabled,disabled}.xml data files. Thus any new CPUID bits which are
not present in the original cpuidMap would be ignored. The correct thing
to do is to use cpu_map.xml.
All data files were fixed by running the following command:
./cpu-cpuid.py diff *.json
Signed-off-by: Jiri Denemark <jdenemar@redhat.com>
Reviewed-by: Pavel Hrdina <phrdina@redhat.com>