1
0
mirror of https://passt.top/passt synced 2025-01-22 04:05:22 +00:00
passt/tcp.c

2619 lines
70 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/* PASST - Plug A Simple Socket Transport
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* for qemu/UNIX domain socket mode
*
* PASTA - Pack A Subtle Tap Abstraction
* for network namespace/tap device mode
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* tcp.c - TCP L2-L4 translation state machine
*
* Copyright (c) 2020-2022 Red Hat GmbH
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
*
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* PASST mode
* ==========
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* This implementation maps TCP traffic between a single L2 interface (tap) and
* native TCP (L4) sockets, mimicking and reproducing as closely as possible the
* inferred behaviour of applications running on a guest, connected via said L2
* interface. Four connection flows are supported:
* - from the local host to the guest behind the tap interface:
* - this is the main use case for proxies in service meshes
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* - we bind to configured local ports, and relay traffic between L4 sockets
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* with local endpoints and the L2 interface
* - from remote hosts to the guest behind the tap interface:
* - this might be needed for services that need to be addressed directly,
* and typically configured with special port forwarding rules (which are
* not needed here)
* - we also relay traffic between L4 sockets with remote endpoints and the L2
* interface
* - from the guest to the local host:
* - this is not observed in practice, but implemented for completeness and
* transparency
* - from the guest to external hosts:
* - this might be needed for applications running on the guest that need to
* directly access internet services (e.g. NTP)
*
* Relevant goals are:
* - transparency: sockets need to behave as if guest applications were running
* directly on the host. This is achieved by:
* - avoiding port and address translations whenever possible
* - mirroring TCP dynamics by observation of socket parameters (TCP_INFO
* socket option) and TCP headers of packets coming from the tap interface,
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
* reapplying those parameters in both flow directions (including TCP_MSS
* socket option)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - simplicity: only a small subset of TCP logic is implemented here and
* delegated as much as possible to the TCP implementations of guest and host
* kernel. This is achieved by:
* - avoiding a complete TCP stack reimplementation, with a modified TCP state
* machine focused on the translation of observed events instead
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - mirroring TCP dynamics as described above and hence avoiding the need for
* segmentation, explicit queueing, and reassembly of segments
* - security:
* - no dynamic memory allocation is performed
* - TODO: synflood protection
*
* Portability is limited by usage of Linux-specific socket options.
*
*
* Limits
* ------
*
* To avoid the need for dynamic memory allocation, a maximum, reasonable amount
* of connections is defined by TCP_MAX_CONNS (currently 128k).
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
*
* Data needs to linger on sockets as long as it's not acknowledged by the
* guest, and is read using MSG_PEEK into preallocated static buffers sized
* to the maximum supported window, 16 MiB ("discard" buffer, for already-sent
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* data) plus a number of maximum-MSS-sized buffers. This imposes a practical
* limitation on window scaling, that is, the maximum factor is 256. Larger
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* factors will be accepted, but resulting, larger values are never advertised
* to the other side, and not used while queueing data.
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
*
* Ports
* -----
*
* To avoid the need for ad-hoc configuration of port forwarding or allowed
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* ports, listening sockets can be opened and bound to all unbound ports on the
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* host, as far as process capabilities allow. This service needs to be started
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* after any application proxy that needs to bind to local ports. Mapped ports
* can also be configured explicitly.
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* No port translation is needed for connections initiated remotely or by the
* local host: source port from socket is reused while establishing connections
* to the guest.
*
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* For connections initiated by the guest, it's not possible to force the same
* source port as connections are established by the host kernel: that's the
* only port translation needed.
*
*
* Connection tracking and storage
* -------------------------------
*
* Connections are tracked by struct tcp_tap_conn entries in the @tc
* array, containing addresses, ports, TCP states and parameters. This
* is statically allocated and indexed by an arbitrary connection
* number. The array is compacted whenever a connection is closed, by
* remapping the highest connection index in use to the one freed up.
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*
* References used for the epoll interface report the connection index used for
* the @tc array.
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* IPv4 addresses are stored as IPv4-mapped IPv6 addresses to avoid the need for
* separate data structures depending on the protocol version.
*
* - Inbound connection requests (to the guest) are mapped using the triple
* < source IP address, source port, destination port >
* - Outbound connection requests (from the guest) are mapped using the triple
* < destination IP address, destination port, source port >
* where the source port is the one used by the guest, not the one used by the
* corresponding host socket
*
*
* Initialisation
* --------------
*
* Up to 2^15 + 2^14 listening sockets (excluding ephemeral ports, repeated for
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* IPv4 and IPv6) can be opened and bound to wildcard addresses. Some will fail
* to bind (for low ports, or ports already bound, e.g. by a proxy). These are
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* added to the epoll list, with no separate storage.
*
*
* Events and states
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* -----------------
*
* Instead of tracking connection states using a state machine, connection
* events are used to determine state and actions for a given connection. This
* makes the implementation simpler as most of the relevant tasks deal with
* reactions to events, rather than state-associated actions. For user
* convenience, approximate states are mapped in logs from events by
* @tcp_state_str.
*
* The events are:
*
* - SOCK_ACCEPTED connection accepted from socket, SYN sent to tap/guest
*
* - TAP_SYN_RCVD tap/guest initiated connection, SYN received
*
* - TAP_SYN_ACK_SENT SYN, ACK sent to tap/guest, valid for TAP_SYN_RCVD only
*
* - ESTABLISHED connection established, the following events are valid:
*
* - SOCK_FIN_RCVD FIN (EPOLLRDHUP) received from socket
*
* - SOCK_FIN_SENT FIN (write shutdown) sent to socket
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* - TAP_FIN_RCVD FIN received from tap/guest
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* - TAP_FIN_SENT FIN sent to tap/guest
*
* - TAP_FIN_ACKED ACK to FIN seen from tap/guest
*
* Setting any event in CONN_STATE_BITS (SOCK_ACCEPTED, TAP_SYN_RCVD,
* ESTABLISHED) clears all the other events, as those represent the fundamental
* connection states. No events (events == CLOSED) means the connection is
* closed.
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* Connection setup
* ----------------
*
* - inbound connection (from socket to guest): on accept() from listening
* socket, the new socket is mapped in connection tracking table, and
* three-way handshake initiated towards the guest, advertising MSS and window
* size and scaling from socket parameters
* - outbound connection (from guest to socket): on SYN segment from guest, a
* new socket is created and mapped in connection tracking table, setting
* MSS and window clamping from header and option of the observed SYN segment
*
*
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* Aging and timeout
* -----------------
*
* Timeouts are implemented by means of timerfd timers, set based on flags:
*
* - SYN_TIMEOUT: if no ACK is received from tap/guest during handshake (flag
* ACK_FROM_TAP_DUE without ESTABLISHED event) within this time, reset the
* connection
*
* - ACK_TIMEOUT: if no ACK segment was received from tap/guest, after sending
* data (flag ACK_FROM_TAP_DUE with ESTABLISHED event), re-send data from the
* socket and reset sequence to what was acknowledged. If this persists for
* more than TCP_MAX_RETRANS times in a row, reset the connection
*
* - FIN_TIMEOUT: if a FIN segment was sent to tap/guest (flag ACK_FROM_TAP_DUE
* with TAP_FIN_SENT event), and no ACK is received within this time, reset
* the connection
*
* - FIN_TIMEOUT: if a FIN segment was acknowledged by tap/guest and a FIN
* segment (write shutdown) was sent via socket (events SOCK_FIN_SENT and
* TAP_FIN_ACKED), but no socket activity is detected from the socket within
* this time, reset the connection
*
* - ACT_TIMEOUT, in the presence of any event: if no activity is detected on
* either side, the connection is reset
*
* - ACK_INTERVAL elapsed after data segment received from tap without having
* sent an ACK segment, or zero-sized window advertised to tap/guest (flag
* ACK_TO_TAP_DUE): forcibly check if an ACK segment can be sent
*
*
* Summary of data flows (with ESTABLISHED event)
* ----------------------------------------------
*
* @seq_to_tap: next sequence for packets to tap/guest
* @seq_ack_from_tap: last ACK number received from tap/guest
* @seq_from_tap: next sequence for packets from tap/guest (expected)
* @seq_ack_to_tap: last ACK number sent to tap/guest
*
* @seq_init_from_tap: initial sequence number from tap/guest
* @seq_init_to_tap: initial sequence number from tap/guest
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* @wnd_from_tap: last window size received from tap, never scaled
* @wnd_from_tap: last window size advertised from tap, never scaled
*
* - from socket to tap/guest:
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - on new data from socket:
* - peek into buffer
* - send data to tap/guest:
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - starting at offset (@seq_to_tap - @seq_ack_from_tap)
* - in MSS-sized segments
* - increasing @seq_to_tap at each segment
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* - up to window (until @seq_to_tap - @seq_ack_from_tap <= @wnd_from_tap)
* - on read error, send RST to tap/guest, close socket
* - on zero read, send FIN to tap/guest, set TAP_FIN_SENT
* - on ACK from tap/guest:
* - set @ts_ack_from_tap
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - check if it's the second duplicated ACK
* - consume buffer by difference between new ack_seq and @seq_ack_from_tap
* - update @seq_ack_from_tap from ack_seq in header
* - on two duplicated ACKs, reset @seq_to_tap to @seq_ack_from_tap, and
* resend with steps listed above
*
* - from tap/guest to socket:
* - on packet from tap/guest:
* - set @ts_tap_act
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* - check seq from header against @seq_from_tap, if data is missing, send
* two ACKs with number @seq_ack_to_tap, discard packet
* - otherwise queue data to socket, set @seq_from_tap to seq from header
* plus payload length
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* - in ESTABLISHED state, send ACK to tap as soon as we queue to the
* socket. In other states, query socket for TCP_INFO, set
* @seq_ack_to_tap to (tcpi_bytes_acked + @seq_init_from_tap) % 2^32 and
* send ACK to tap/guest
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*
*
* PASTA mode
* ==========
*
* For traffic directed to TCP ports configured for mapping to the tuntap device
* in the namespace, and for non-local traffic coming from the tuntap device,
* the implementation is identical as the PASST mode described in the previous
* section.
*
* For local traffic directed to TCP ports configured for direct mapping between
* namespaces, see the implementation in tcp_splice.c.
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
#include <sched.h>
#include <fcntl.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <errno.h>
#include <limits.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
#include <netinet/tcp.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <stdint.h>
#include <stdbool.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <stddef.h>
#include <string.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <sys/uio.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include <time.h>
#include <arpa/inet.h>
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include "checksum.h"
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
#include "util.h"
#include "iov.h"
#include "ip.h"
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include "passt.h"
#include "tap.h"
#include "siphash.h"
#include "pcap.h"
#include "tcp_splice.h"
#include "log.h"
#include "inany.h"
#include "flow.h"
#include "linux_dep.h"
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#include "flow_table.h"
#include "tcp_internal.h"
#include "tcp_buf.h"
#include "tcp_vu.h"
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/* MSS rounding: see SET_MSS() */
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#define MSS_DEFAULT 536
#define WINDOW_DEFAULT 14600 /* RFC 6928 */
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
tcp: Don't reset ACK_TO_TAP_DUE on any ACK, reschedule timer as needed This is mostly symmetric with commit cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer"): we shouldn't reset the ACK_TO_TAP_DUE flag on any inbound ACK segment, but only once we acknowledge everything we received from the guest or the container. If we don't, a client might unnecessarily hold off further data, especially during slow start, and in general we won't converge to the usable bandwidth. This is very visible especially with traffic tests on links with non-negligible latency, such as in the reported issue. There, a public iperf3 server sometimes aborts the test due do what appears to be a low iperf3's --rcv-timeout (probably less than a second). Even if this doesn't happen, the throughput will converge to a fraction of the usable bandwidth. Clear ACK_TO_TAP_DUE if we acknowledged everything, set it if we didn't, and reschedule the timer in case the flag is still set as the timer expires. While at it, decrease the ACK timer interval to 10ms. A 50ms interval is short enough for any bandwidth-delay product I had in mind (local connections, or non-local connections with limited bandwidth), but here I am, testing 1gbps transfers to a peer with 100ms RTT. Indeed, we could eventually make the timer interval dependent on the current window and estimated bandwidth-delay product, but at least for the moment being, 10ms should be long enough to avoid any measurable syscall overhead, yet usable for any real-world application. Reported-by: Lukas Mrtvy <lukas.mrtvy@gmail.com> Link: https://bugs.passt.top/show_bug.cgi?id=44 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-21 23:14:58 +01:00
#define ACK_INTERVAL 10 /* ms */
#define SYN_TIMEOUT 10 /* s */
#define ACK_TIMEOUT 2
#define FIN_TIMEOUT 60
#define ACT_TIMEOUT 7200
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#define LOW_RTT_TABLE_SIZE 8
#define LOW_RTT_THRESHOLD 10 /* us */
#define ACK_IF_NEEDED 0 /* See tcp_send_flag() */
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
#define CONN_IS_CLOSING(conn) \
(((conn)->events & ESTABLISHED) && \
((conn)->events & (SOCK_FIN_RCVD | TAP_FIN_RCVD)))
#define CONN_HAS(conn, set) (((conn)->events & (set)) == (set))
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
static const char *tcp_event_str[] __attribute((__unused__)) = {
"SOCK_ACCEPTED", "TAP_SYN_RCVD", "ESTABLISHED", "TAP_SYN_ACK_SENT",
"SOCK_FIN_RCVD", "SOCK_FIN_SENT", "TAP_FIN_RCVD", "TAP_FIN_SENT",
"TAP_FIN_ACKED",
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
};
static const char *tcp_state_str[] __attribute((__unused__)) = {
"SYN_RCVD", "SYN_SENT", "ESTABLISHED",
"SYN_RCVD", /* approximately maps to TAP_SYN_ACK_SENT */
/* Passive close: */
"CLOSE_WAIT", "CLOSE_WAIT", "LAST_ACK", "LAST_ACK", "LAST_ACK",
/* Active close (+5): */
"CLOSING", "FIN_WAIT_1", "FIN_WAIT_1", "FIN_WAIT_2", "TIME_WAIT",
};
static const char *tcp_flag_str[] __attribute((__unused__)) = {
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
"STALLED", "LOCAL", "ACTIVE_CLOSE", "ACK_TO_TAP_DUE",
tcp: Mask EPOLLIN altogether if we're blocked waiting on an ACK from the guest There are pretty much two cases of the (misnomer) STALLED: in one case, we could send more data to the guest if it becomes available, and in another case, we can't, because we filled the window. If, in this second case, we keep EPOLLIN enabled, but never read from the socket, we get short but CPU-annoying storms of EPOLLIN events, upon which we reschedule the ACK timeout handler, never read from the socket, go back to epoll_wait(), and so on: timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 also known as: 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s which, for some reason, becomes very visible with muvm and aria2c downloading from a server nearby in parallel chunks. That's because EPOLLIN isn't cleared if we don't read from the socket, and even with EPOLLET, epoll_wait() will repeatedly wake us up until we actually read something. In this case, we don't want to subscribe to EPOLLIN at all: all we're waiting for is an ACK segment from the guest. Differentiate this case with a new connection flag, ACK_FROM_TAP_BLOCKS, which doesn't just indicate that we're waiting for an ACK from the guest (ACK_FROM_TAP_DUE), but also that we're blocked waiting for it. If this flag is set before we set STALLED, EPOLLIN will be masked while we set EPOLLET because of STALLED. Whenever we clear STALLED, we also clear this flag. This is definitely not elegant, but it's a minimal fix. We can probably simplify this at a later point by having a category of connection flags directly corresponding to epoll flags, and dropping STALLED altogether, or, perhaps, always using EPOLLET (but we need a mechanism to re-check sockets for pending data if we can't temporarily write to the guest). I suspect that this might also be implied in https://github.com/containers/podman/issues/23686, hence the Link: tag. It doesn't necessarily mean I'm fixing it (I can't reproduce that). Link: https://github.com/containers/podman/issues/23686 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2025-01-16 20:47:00 +01:00
"ACK_FROM_TAP_DUE", "ACK_FROM_TAP_BLOCKS",
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
};
/* Listening sockets, used for automatic port forwarding in pasta mode only */
static int tcp_sock_init_ext [NUM_PORTS][IP_VERSIONS];
static int tcp_sock_ns [NUM_PORTS][IP_VERSIONS];
/* Table of our guest side addresses with very low RTT (assumed to be local to
* the host), LRU
*/
static union inany_addr low_rtt_dst[LOW_RTT_TABLE_SIZE];
char tcp_buf_discard [MAX_WINDOW];
/* Does the kernel support TCP_PEEK_OFF? */
bool peek_offset_cap;
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
/* Size of data returned by TCP_INFO getsockopt() */
socklen_t tcp_info_size;
#define tcp_info_cap(f_) \
((offsetof(struct tcp_info_linux, tcpi_##f_) + \
sizeof(((struct tcp_info_linux *)NULL)->tcpi_##f_)) <= tcp_info_size)
/* Kernel reports sending window in TCP_INFO (kernel commit 8f7baad7f035) */
#define snd_wnd_cap tcp_info_cap(snd_wnd)
/* Kernel reports bytes acked in TCP_INFO (kernel commit 0df48c26d84) */
#define bytes_acked_cap tcp_info_cap(bytes_acked)
/* Kernel reports minimum RTT in TCP_INFO (kernel commit cd9b266095f4) */
#define min_rtt_cap tcp_info_cap(min_rtt)
/* sendmsg() to socket */
static struct iovec tcp_iov [UIO_MAXIOV];
/* Pools for pre-opened sockets (in init) */
int init_sock_pool4 [TCP_SOCK_POOL_SIZE];
int init_sock_pool6 [TCP_SOCK_POOL_SIZE];
/**
* conn_at_sidx() - Get TCP connection specific flow at given sidx
* @sidx: Flow and side to retrieve
*
* Return: TCP connection at @sidx, or NULL of @sidx is invalid. Asserts if the
* flow at @sidx is not FLOW_TCP.
*/
static struct tcp_tap_conn *conn_at_sidx(flow_sidx_t sidx)
{
union flow *flow = flow_at_sidx(sidx);
if (!flow)
return NULL;
ASSERT(flow->f.type == FLOW_TCP);
return &flow->tcp;
}
/**
* tcp_set_peek_offset() - Set SO_PEEK_OFF offset on a socket if supported
* @s: Socket to update
* @offset: Offset in bytes
*
* Return: -1 when it fails, 0 otherwise.
*/
int tcp_set_peek_offset(int s, int offset)
{
if (!peek_offset_cap)
return 0;
if (setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &offset, sizeof(offset))) {
err("Failed to set SO_PEEK_OFF to %i in socket %i", offset, s);
return -1;
}
return 0;
}
/**
* tcp_conn_epoll_events() - epoll events mask for given connection state
* @events: Current connection events
* @conn_flags Connection flags
*
* Return: epoll events mask corresponding to implied connection state
*/
static uint32_t tcp_conn_epoll_events(uint8_t events, uint8_t conn_flags)
{
if (!events)
return 0;
if (events & ESTABLISHED) {
if (events & TAP_FIN_SENT)
return EPOLLET;
tcp: Mask EPOLLIN altogether if we're blocked waiting on an ACK from the guest There are pretty much two cases of the (misnomer) STALLED: in one case, we could send more data to the guest if it becomes available, and in another case, we can't, because we filled the window. If, in this second case, we keep EPOLLIN enabled, but never read from the socket, we get short but CPU-annoying storms of EPOLLIN events, upon which we reschedule the ACK timeout handler, never read from the socket, go back to epoll_wait(), and so on: timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 also known as: 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s which, for some reason, becomes very visible with muvm and aria2c downloading from a server nearby in parallel chunks. That's because EPOLLIN isn't cleared if we don't read from the socket, and even with EPOLLET, epoll_wait() will repeatedly wake us up until we actually read something. In this case, we don't want to subscribe to EPOLLIN at all: all we're waiting for is an ACK segment from the guest. Differentiate this case with a new connection flag, ACK_FROM_TAP_BLOCKS, which doesn't just indicate that we're waiting for an ACK from the guest (ACK_FROM_TAP_DUE), but also that we're blocked waiting for it. If this flag is set before we set STALLED, EPOLLIN will be masked while we set EPOLLET because of STALLED. Whenever we clear STALLED, we also clear this flag. This is definitely not elegant, but it's a minimal fix. We can probably simplify this at a later point by having a category of connection flags directly corresponding to epoll flags, and dropping STALLED altogether, or, perhaps, always using EPOLLET (but we need a mechanism to re-check sockets for pending data if we can't temporarily write to the guest). I suspect that this might also be implied in https://github.com/containers/podman/issues/23686, hence the Link: tag. It doesn't necessarily mean I'm fixing it (I can't reproduce that). Link: https://github.com/containers/podman/issues/23686 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2025-01-16 20:47:00 +01:00
if (conn_flags & STALLED) {
if (conn_flags & ACK_FROM_TAP_BLOCKS)
return EPOLLRDHUP | EPOLLET;
return EPOLLIN | EPOLLRDHUP | EPOLLET;
tcp: Mask EPOLLIN altogether if we're blocked waiting on an ACK from the guest There are pretty much two cases of the (misnomer) STALLED: in one case, we could send more data to the guest if it becomes available, and in another case, we can't, because we filled the window. If, in this second case, we keep EPOLLIN enabled, but never read from the socket, we get short but CPU-annoying storms of EPOLLIN events, upon which we reschedule the ACK timeout handler, never read from the socket, go back to epoll_wait(), and so on: timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 timerfd_settime(76, 0, {it_interval={tv_sec=0, tv_nsec=0}, it_value={tv_sec=2, tv_nsec=0}}, NULL) = 0 epoll_wait(3, [{events=EPOLLIN, data={u32=10497, u64=38654716161}}], 8, 1000) = 1 also known as: 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s 29.1517: Flow 2 (TCP connection): timer expires in 2.000s which, for some reason, becomes very visible with muvm and aria2c downloading from a server nearby in parallel chunks. That's because EPOLLIN isn't cleared if we don't read from the socket, and even with EPOLLET, epoll_wait() will repeatedly wake us up until we actually read something. In this case, we don't want to subscribe to EPOLLIN at all: all we're waiting for is an ACK segment from the guest. Differentiate this case with a new connection flag, ACK_FROM_TAP_BLOCKS, which doesn't just indicate that we're waiting for an ACK from the guest (ACK_FROM_TAP_DUE), but also that we're blocked waiting for it. If this flag is set before we set STALLED, EPOLLIN will be masked while we set EPOLLET because of STALLED. Whenever we clear STALLED, we also clear this flag. This is definitely not elegant, but it's a minimal fix. We can probably simplify this at a later point by having a category of connection flags directly corresponding to epoll flags, and dropping STALLED altogether, or, perhaps, always using EPOLLET (but we need a mechanism to re-check sockets for pending data if we can't temporarily write to the guest). I suspect that this might also be implied in https://github.com/containers/podman/issues/23686, hence the Link: tag. It doesn't necessarily mean I'm fixing it (I can't reproduce that). Link: https://github.com/containers/podman/issues/23686 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2025-01-16 20:47:00 +01:00
}
return EPOLLIN | EPOLLRDHUP;
}
if (events == TAP_SYN_RCVD)
return EPOLLOUT | EPOLLET | EPOLLRDHUP;
tcp: Use EPOLLET for any state of not established connections Currently, for not established connections, we monitor sockets with edge-triggered events (EPOLLET) if we are in the TAP_SYN_RCVD state (outbound connection being established) but not in the TAP_SYN_ACK_SENT case of it (socket is connected, and we sent SYN,ACK to the container/guest). While debugging https://bugs.passt.top/show_bug.cgi?id=94, I spotted another possibility for a short EPOLLRDHUP storm (10 seconds), which doesn't seem to happen in actual use cases, but I could reproduce it: start a connection from a container, while dropping (using netfilter) ACK segments coming out of the container itself. On the server side, outside the container, accept the connection and shutdown the writing side of it immediately. At this point, we're in the TAP_SYN_ACK_SENT case (not just a mere TAP_SYN_RCVD state), we get EPOLLRDHUP from the socket, but we don't have any reasonable way to handle it other than waiting for the tap side to complete the three-way handshake. So we'll just keep getting this EPOLLRDHUP until the SYN_TIMEOUT kicks in. Always enable EPOLLET when EPOLLRDHUP is the only epoll event we subscribe to: in this case, getting multiple EPOLLRDHUP reports is totally useless. In the only remaining non-established state, SOCK_ACCEPTED, for inbound connections, we're anyway discarding EPOLLRDHUP events until we established the conection, because we don't know what to do with them until we get an answer from the tap side, so it's safe to enable EPOLLET also in that case. Link: https://bugs.passt.top/show_bug.cgi?id=94 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-09-06 10:33:55 +02:00
return EPOLLET | EPOLLRDHUP;
}
/**
* tcp_epoll_ctl() - Add/modify/delete epoll state from connection events
* @c: Execution context
* @conn: Connection pointer
*
* Return: 0 on success, negative error code on failure (not on deletion)
*/
static int tcp_epoll_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
int m = conn->in_epoll ? EPOLL_CTL_MOD : EPOLL_CTL_ADD;
union epoll_ref ref = { .type = EPOLL_TYPE_TCP, .fd = conn->sock,
.flowside = FLOW_SIDX(conn, !TAPSIDE(conn)), };
struct epoll_event ev = { .data.u64 = ref.u64 };
if (conn->events == CLOSED) {
if (conn->in_epoll)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->sock, &ev);
if (conn->timer != -1)
epoll_ctl(c->epollfd, EPOLL_CTL_DEL, conn->timer, &ev);
return 0;
}
ev.events = tcp_conn_epoll_events(conn->events, conn->flags);
if (epoll_ctl(c->epollfd, m, conn->sock, &ev))
return -errno;
conn->in_epoll = true;
if (conn->timer != -1) {
union epoll_ref ref_t = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev_t = { .data.u64 = ref_t.u64,
.events = EPOLLIN | EPOLLET };
if (epoll_ctl(c->epollfd, EPOLL_CTL_MOD, conn->timer, &ev_t))
return -errno;
}
return 0;
}
/**
* tcp_timer_ctl() - Set timerfd based on flags/events, create timerfd if needed
* @c: Execution context
* @conn: Connection pointer
*
* #syscalls timerfd_create timerfd_settime
*/
static void tcp_timer_ctl(const struct ctx *c, struct tcp_tap_conn *conn)
{
struct itimerspec it = { { 0 }, { 0 } };
if (conn->events == CLOSED)
return;
if (conn->timer == -1) {
union epoll_ref ref = { .type = EPOLL_TYPE_TCP_TIMER,
.fd = conn->sock,
.flow = FLOW_IDX(conn) };
struct epoll_event ev = { .data.u64 = ref.u64,
.events = EPOLLIN | EPOLLET };
int fd;
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd == -1 || fd > FD_REF_MAX) {
flow_dbg(conn, "failed to get timer: %s",
strerror_(errno));
if (fd > -1)
close(fd);
conn->timer = -1;
return;
}
conn->timer = fd;
if (epoll_ctl(c->epollfd, EPOLL_CTL_ADD, conn->timer, &ev)) {
flow_dbg(conn, "failed to add timer: %s",
strerror_(errno));
close(conn->timer);
conn->timer = -1;
return;
}
}
if (conn->flags & ACK_TO_TAP_DUE) {
it.it_value.tv_nsec = (long)ACK_INTERVAL * 1000 * 1000;
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED))
it.it_value.tv_sec = SYN_TIMEOUT;
else
it.it_value.tv_sec = ACK_TIMEOUT;
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
it.it_value.tv_sec = FIN_TIMEOUT;
} else {
it.it_value.tv_sec = ACT_TIMEOUT;
}
flow_dbg(conn, "timer expires in %llu.%03llus",
(unsigned long long)it.it_value.tv_sec,
(unsigned long long)it.it_value.tv_nsec / 1000 / 1000);
if (timerfd_settime(conn->timer, 0, &it, NULL))
flow_err(conn, "failed to set timer: %s", strerror_(errno));
}
/**
* conn_flag_do() - Set/unset given flag, log, update epoll on STALLED flag
* @c: Execution context
* @conn: Connection pointer
* @flag: Flag to set, or ~flag to unset
*/
void conn_flag_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long flag)
{
if (flag & (flag - 1)) {
int flag_index = fls(~flag);
if (!(conn->flags & ~flag))
return;
conn->flags &= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s dropped", tcp_flag_str[flag_index]);
} else {
int flag_index = fls(flag);
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
if (conn->flags & flag) {
/* Special case: setting ACK_FROM_TAP_DUE on a
* connection where it's already set is used to
* re-schedule the existing timer.
* TODO: define clearer semantics for timer-related
* flags and factor this into the logic below.
*/
if (flag == ACK_FROM_TAP_DUE)
tcp_timer_ctl(c, conn);
return;
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
}
conn->flags |= flag;
if (flag_index >= 0)
flow_dbg(conn, "%s", tcp_flag_str[flag_index]);
}
if (flag == STALLED || flag == ~STALLED)
tcp_epoll_ctl(c, conn);
if (flag == ACK_FROM_TAP_DUE || flag == ACK_TO_TAP_DUE ||
(flag == ~ACK_FROM_TAP_DUE && (conn->flags & ACK_TO_TAP_DUE)) ||
(flag == ~ACK_TO_TAP_DUE && (conn->flags & ACK_FROM_TAP_DUE)))
tcp_timer_ctl(c, conn);
}
/**
* conn_event_do() - Set and log connection events, update epoll state
* @c: Execution context
* @conn: Connection pointer
* @event: Connection event
*/
void conn_event_do(const struct ctx *c, struct tcp_tap_conn *conn,
unsigned long event)
{
int prev, new, num = fls(event);
if (conn->events & event)
return;
prev = fls(conn->events);
if (conn->flags & ACTIVE_CLOSE)
prev += 5;
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED))
prev++; /* i.e. SOCK_FIN_RCVD, not TAP_SYN_ACK_SENT */
if (event == CLOSED || (event & CONN_STATE_BITS))
conn->events = event;
else
conn->events |= event;
new = fls(conn->events);
if ((conn->events & ESTABLISHED) && (conn->events != ESTABLISHED)) {
num++;
new++;
}
if (conn->flags & ACTIVE_CLOSE)
new += 5;
if (prev != new)
flow_dbg(conn, "%s: %s -> %s",
num == -1 ? "CLOSED" : tcp_event_str[num],
prev == -1 ? "CLOSED" : tcp_state_str[prev],
(new == -1 || num == -1) ? "CLOSED" : tcp_state_str[new]);
else
flow_dbg(conn, "%s",
num == -1 ? "CLOSED" : tcp_event_str[num]);
if (event == CLOSED)
flow_hash_remove(c, TAP_SIDX(conn));
else if ((event == TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_RCVD))
conn_flag(c, conn, ACTIVE_CLOSE);
else
tcp_epoll_ctl(c, conn);
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
tcp_timer_ctl(c, conn);
}
/**
* tcp_rtt_dst_low() - Check if low RTT was seen for connection endpoint
* @conn: Connection pointer
*
* Return: 1 if destination is in low RTT table, 0 otherwise
*/
static int tcp_rtt_dst_low(const struct tcp_tap_conn *conn)
{
const struct flowside *tapside = TAPFLOW(conn);
int i;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++)
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return 1;
return 0;
}
/**
* tcp_rtt_dst_check() - Check tcpi_min_rtt, insert endpoint in table if low
* @conn: Connection pointer
* @tinfo: Pointer to struct tcp_info for socket
*/
static void tcp_rtt_dst_check(const struct tcp_tap_conn *conn,
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
const struct tcp_info_linux *tinfo)
{
const struct flowside *tapside = TAPFLOW(conn);
int i, hole = -1;
if (!min_rtt_cap ||
(int)tinfo->tcpi_min_rtt > LOW_RTT_THRESHOLD)
return;
for (i = 0; i < LOW_RTT_TABLE_SIZE; i++) {
if (inany_equals(&tapside->oaddr, low_rtt_dst + i))
return;
if (hole == -1 && IN6_IS_ADDR_UNSPECIFIED(low_rtt_dst + i))
hole = i;
}
/* Keep gcc 12 happy: this won't actually happen because the table is
* guaranteed to have a hole, see the second memcpy() below.
*/
if (hole == -1)
return;
low_rtt_dst[hole++] = tapside->oaddr;
if (hole == LOW_RTT_TABLE_SIZE)
hole = 0;
inany_from_af(low_rtt_dst + hole, AF_INET6, &in6addr_any);
}
/**
* tcp_get_sndbuf() - Get, scale SO_SNDBUF between thresholds (1 to 0.5 usage)
* @conn: Connection pointer
*/
static void tcp_get_sndbuf(struct tcp_tap_conn *conn)
{
int s = conn->sock, sndbuf;
socklen_t sl;
uint64_t v;
sl = sizeof(sndbuf);
if (getsockopt(s, SOL_SOCKET, SO_SNDBUF, &sndbuf, &sl)) {
SNDBUF_SET(conn, WINDOW_DEFAULT);
return;
}
v = sndbuf;
if (v >= SNDBUF_BIG)
v /= 2;
else if (v > SNDBUF_SMALL)
v -= v * (v - SNDBUF_SMALL) / (SNDBUF_BIG - SNDBUF_SMALL) / 2;
SNDBUF_SET(conn, MIN(INT_MAX, v));
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/**
* tcp_sock_set_bufsize() - Set SO_RCVBUF and SO_SNDBUF to maximum values
* @s: Socket, can be -1 to avoid check in the caller
*/
static void tcp_sock_set_bufsize(const struct ctx *c, int s)
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
{
int v = INT_MAX / 2; /* Kernel clamps and rounds, no need to check */
if (s == -1)
return;
if (!c->low_rmem && setsockopt(s, SOL_SOCKET, SO_RCVBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_RCVBUF to %i", v);
if (!c->low_wmem && setsockopt(s, SOL_SOCKET, SO_SNDBUF, &v, sizeof(v)))
trace("TCP: failed to set SO_SNDBUF to %i", v);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
/**
* tcp_update_csum() - Calculate TCP checksum
* @psum: Unfolded partial checksum of the IPv4 or IPv6 pseudo-header
* @th: TCP header (updated)
* @payload: TCP payload
*/
void tcp_update_csum(uint32_t psum, struct tcphdr *th, struct iov_tail *payload)
{
th->check = 0;
psum = csum_unfolded(th, sizeof(*th), psum);
th->check = csum_iov_tail(payload, psum);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_opt_get() - Get option, and value if any, from TCP header
* @opts: Pointer to start of TCP options in header
* @len: Length of buffer, excluding TCP header -- NOT checked here!
* @type_find: Option type to look for
* @optlen_set: Optional, filled with option length if passed
* @value_set: Optional, set to start of option value if passed
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* Return: option value, meaningful for up to 4 bytes, -1 if not found
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
static int tcp_opt_get(const char *opts, size_t len, uint8_t type_find,
uint8_t *optlen_set, const char **value_set)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
uint8_t type, optlen;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (!opts || !len)
return -1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
for (; len >= 2; opts += optlen, len -= optlen) {
switch (*opts) {
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
case OPT_EOL:
return -1;
case OPT_NOP:
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
optlen = 1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
break;
default:
type = *(opts++);
if (*(uint8_t *)opts < 2 || *(uint8_t *)opts > len)
return -1;
optlen = *(opts++) - 2;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
len -= 2;
if (type != type_find)
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
break;
if (optlen_set)
*optlen_set = optlen;
if (value_set)
*value_set = opts;
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
switch (optlen) {
case 0:
return 0;
case 1:
return *opts;
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
case 2:
return ntohs(*(uint16_t *)opts);
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
default:
return ntohl(*(uint32_t *)opts);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
}
}
return -1;
}
/**
* tcp_flow_defer() - Deferred per-flow handling (clean up closed connections)
* @conn: Connection to handle
*
* Return: true if the connection is ready to free, false otherwise
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
bool tcp_flow_defer(const struct tcp_tap_conn *conn)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
if (conn->events != CLOSED)
return false;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
close(conn->sock);
if (conn->timer != -1)
close(conn->timer);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return true;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
/**
* tcp_defer_handler() - Handler for TCP deferred tasks
* @c: Execution context
*/
/* cppcheck-suppress [constParameterPointer, unmatchedSuppression] */
void tcp_defer_handler(struct ctx *c)
{
tcp_payload_flush(c);
}
/**
* tcp_fill_header() - Fill the TCP header fields for a given TCP segment.
*
* @th: Pointer to the TCP header structure
* @conn: Pointer to the TCP connection structure
* @seq: Sequence number
*/
static void tcp_fill_header(struct tcphdr *th,
const struct tcp_tap_conn *conn, uint32_t seq)
{
const struct flowside *tapside = TAPFLOW(conn);
th->source = htons(tapside->oport);
th->dest = htons(tapside->eport);
th->seq = htonl(seq);
th->ack_seq = htonl(conn->seq_ack_to_tap);
if (conn->events & ESTABLISHED) {
th->window = htons(conn->wnd_to_tap);
} else {
unsigned wnd = conn->wnd_to_tap << conn->ws_to_tap;
th->window = htons(MIN(wnd, USHRT_MAX));
}
}
/**
* tcp_fill_headers() - Fill 802.3, IP, TCP headers
* @conn: Connection pointer
* @taph: tap backend specific header
* @ip4h: Pointer to IPv4 header, or NULL
* @ip6h: Pointer to IPv6 header, or NULL
* @th: Pointer to TCP header
* @payload: TCP payload
* @ip4_check: IPv4 checksum, if already known
* @seq: Sequence number for this segment
* @no_tcp_csum: Do not set TCP checksum
*/
void tcp_fill_headers(const struct tcp_tap_conn *conn,
struct tap_hdr *taph,
struct iphdr *ip4h, struct ipv6hdr *ip6h,
struct tcphdr *th, struct iov_tail *payload,
const uint16_t *ip4_check, uint32_t seq, bool no_tcp_csum)
{
const struct flowside *tapside = TAPFLOW(conn);
size_t l4len = iov_tail_size(payload) + sizeof(*th);
size_t l3len = l4len;
uint32_t psum = 0;
if (ip4h) {
const struct in_addr *src4 = inany_v4(&tapside->oaddr);
const struct in_addr *dst4 = inany_v4(&tapside->eaddr);
ASSERT(src4 && dst4);
l3len += + sizeof(*ip4h);
ip4h->tot_len = htons(l3len);
ip4h->saddr = src4->s_addr;
ip4h->daddr = dst4->s_addr;
if (ip4_check)
ip4h->check = *ip4_check;
else
ip4h->check = csum_ip4_header(l3len, IPPROTO_TCP,
*src4, *dst4);
if (!no_tcp_csum) {
psum = proto_ipv4_header_psum(l4len, IPPROTO_TCP,
*src4, *dst4);
}
}
if (ip6h) {
l3len += sizeof(*ip6h);
ip6h->payload_len = htons(l4len);
ip6h->saddr = tapside->oaddr.a6;
ip6h->daddr = tapside->eaddr.a6;
ip6h->hop_limit = 255;
ip6h->version = 6;
ip6h->nexthdr = IPPROTO_TCP;
ip6h->flow_lbl[0] = (conn->sock >> 16) & 0xf;
ip6h->flow_lbl[1] = (conn->sock >> 8) & 0xff;
ip6h->flow_lbl[2] = (conn->sock >> 0) & 0xff;
if (!no_tcp_csum) {
psum = proto_ipv6_header_psum(l4len, IPPROTO_TCP,
&ip6h->saddr,
&ip6h->daddr);
}
}
tcp_fill_header(th, conn, seq);
if (no_tcp_csum)
th->check = 0;
else
tcp_update_csum(psum, th, payload);
tap_hdr_update(taph, l3len + sizeof(struct ethhdr));
}
/**
* tcp_update_seqack_wnd() - Update ACK sequence and window to guest/tap
* @c: Execution context
* @conn: Connection pointer
* @force_seq: Force ACK sequence to latest segment, instead of checking socket
* @tinfo: tcp_info from kernel, can be NULL if not pre-fetched
*
* Return: 1 if sequence or window were updated, 0 otherwise
*/
int tcp_update_seqack_wnd(const struct ctx *c, struct tcp_tap_conn *conn,
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
bool force_seq, struct tcp_info_linux *tinfo)
{
uint32_t prev_wnd_to_tap = conn->wnd_to_tap << conn->ws_to_tap;
uint32_t prev_ack_to_tap = conn->seq_ack_to_tap;
/* cppcheck-suppress [ctunullpointer, unmatchedSuppression] */
socklen_t sl = sizeof(*tinfo);
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
struct tcp_info_linux tinfo_new;
uint32_t new_wnd_to_tap = prev_wnd_to_tap;
int s = conn->sock;
if (!bytes_acked_cap) {
conn->seq_ack_to_tap = conn->seq_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
} else {
if ((unsigned)SNDBUF_GET(conn) < SNDBUF_SMALL ||
tcp_rtt_dst_low(conn) || CONN_IS_CLOSING(conn) ||
(conn->flags & LOCAL) || force_seq) {
conn->seq_ack_to_tap = conn->seq_from_tap;
} else if (conn->seq_ack_to_tap != conn->seq_from_tap) {
if (!tinfo) {
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl))
return 0;
}
conn->seq_ack_to_tap = tinfo->tcpi_bytes_acked +
conn->seq_init_from_tap;
if (SEQ_LT(conn->seq_ack_to_tap, prev_ack_to_tap))
conn->seq_ack_to_tap = prev_ack_to_tap;
}
}
if (!snd_wnd_cap) {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN(SNDBUF_GET(conn), MAX_WINDOW);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap,
USHRT_MAX);
goto out;
}
if (!tinfo) {
if (prev_wnd_to_tap > WINDOW_DEFAULT) {
goto out;
}
tinfo = &tinfo_new;
if (getsockopt(s, SOL_TCP, TCP_INFO, tinfo, &sl)) {
goto out;
}
}
if ((conn->flags & LOCAL) || tcp_rtt_dst_low(conn)) {
new_wnd_to_tap = tinfo->tcpi_snd_wnd;
} else {
tcp_get_sndbuf(conn);
new_wnd_to_tap = MIN((int)tinfo->tcpi_snd_wnd,
SNDBUF_GET(conn));
}
new_wnd_to_tap = MIN(new_wnd_to_tap, MAX_WINDOW);
if (!(conn->events & ESTABLISHED))
new_wnd_to_tap = MAX(new_wnd_to_tap, WINDOW_DEFAULT);
conn->wnd_to_tap = MIN(new_wnd_to_tap >> conn->ws_to_tap, USHRT_MAX);
/* Certain cppcheck versions, e.g. 2.12.0 have a bug where they think
* the MIN() above restricts conn->wnd_to_tap to be zero. That's
* clearly incorrect, but until the bug is fixed, work around it.
* https://bugzilla.redhat.com/show_bug.cgi?id=2240705
* https://sourceforge.net/p/cppcheck/discussion/general/thread/f5b1a00646/
*/
/* cppcheck-suppress [knownConditionTrueFalse, unmatchedSuppression] */
if (!conn->wnd_to_tap)
conn_flag(c, conn, ACK_TO_TAP_DUE);
out:
return new_wnd_to_tap != prev_wnd_to_tap ||
conn->seq_ack_to_tap != prev_ack_to_tap;
}
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
/**
* tcp_update_seqack_from_tap() - ACK number from tap and related flags/counters
* @c: Execution context
* @conn: Connection pointer
* @seq Current ACK sequence, host order
*/
static void tcp_update_seqack_from_tap(const struct ctx *c,
struct tcp_tap_conn *conn, uint32_t seq)
{
tcp: Clear ACK_FROM_TAP_DUE also on unchanged ACK sequence from peer Since commit cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer"), we don't clear ACK_FROM_TAP_DUE whenever we process an ACK segment, but, more correctly, only if we're really not waiting for a further ACK segment, that is, only if the acknowledged sequence matches what we sent. In the new function implementing this, tcp_update_seqack_from_tap(), we also reset the retransmission counter and store the updated ACK sequence. Both should be done iff forward progress is acknowledged, implied by the fact that the new ACK sequence is greater than the one we previously stored. At that point, it looked natural to also include the statements that clear and set the ACK_FROM_TAP_DUE flag inside the same conditional block: if we're not making forward progress, the need for an ACK, or lack thereof, should remain unchanged. There might be cases where this isn't true, though: without the previous commit 4e73e9bd655c ("tcp: Don't special case the handling of the ack of a syn"), this would happen if a tap-side client initiated a connection, and the server didn't send any data. At that point we would never, in the established state of the connection, call tcp_update_seqack_from_tap() with reported forward progress. That issue itself is fixed by the previous commit, now, but clearing ACK_FROM_TAP_DUE only on ACK sequence progress doesn't really follow any logic. Clear the ACK_FROM_TAP_DUE flag regardless of reported forward progress. If we clear it when it's already unset, conn_flag() will do nothing with it. This doesn't fix any known functional issue, rather a conceptual one. Fixes: cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer") Reported-by: David Gibson <david@gibson.dropbear.id.au> Analysed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-23 16:07:57 +01:00
if (seq == conn->seq_to_tap)
conn_flag(c, conn, ~ACK_FROM_TAP_DUE);
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
if (SEQ_GT(seq, conn->seq_ack_from_tap)) {
tcp: Clear ACK_FROM_TAP_DUE also on unchanged ACK sequence from peer Since commit cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer"), we don't clear ACK_FROM_TAP_DUE whenever we process an ACK segment, but, more correctly, only if we're really not waiting for a further ACK segment, that is, only if the acknowledged sequence matches what we sent. In the new function implementing this, tcp_update_seqack_from_tap(), we also reset the retransmission counter and store the updated ACK sequence. Both should be done iff forward progress is acknowledged, implied by the fact that the new ACK sequence is greater than the one we previously stored. At that point, it looked natural to also include the statements that clear and set the ACK_FROM_TAP_DUE flag inside the same conditional block: if we're not making forward progress, the need for an ACK, or lack thereof, should remain unchanged. There might be cases where this isn't true, though: without the previous commit 4e73e9bd655c ("tcp: Don't special case the handling of the ack of a syn"), this would happen if a tap-side client initiated a connection, and the server didn't send any data. At that point we would never, in the established state of the connection, call tcp_update_seqack_from_tap() with reported forward progress. That issue itself is fixed by the previous commit, now, but clearing ACK_FROM_TAP_DUE only on ACK sequence progress doesn't really follow any logic. Clear the ACK_FROM_TAP_DUE flag regardless of reported forward progress. If we clear it when it's already unset, conn_flag() will do nothing with it. This doesn't fix any known functional issue, rather a conceptual one. Fixes: cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer") Reported-by: David Gibson <david@gibson.dropbear.id.au> Analysed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-23 16:07:57 +01:00
/* Forward progress, but more data to acknowledge: reschedule */
if (SEQ_LT(seq, conn->seq_to_tap))
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
conn_flag(c, conn, ACK_FROM_TAP_DUE);
conn->retrans = 0;
conn->seq_ack_from_tap = seq;
}
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_prepare_flags() - Prepare header for flags-only segment (no payload)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @c: Execution context
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
* @th: TCP header to update
* @data: buffer to store TCP option
* @optlen: size of the TCP option buffer (output parameter)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* Return: < 0 error code on connection reset,
* 0 if there is no flag to send
* 1 otherwise
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
int tcp_prepare_flags(const struct ctx *c, struct tcp_tap_conn *conn,
int flags, struct tcphdr *th, struct tcp_syn_opts *opts,
size_t *optlen)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
struct tcp_info_linux tinfo = { 0 };
socklen_t sl = sizeof(tinfo);
int s = conn->sock;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap) &&
!flags && conn->wnd_to_tap) {
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return 0;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
conn_event(c, conn, CLOSED);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return -ECONNRESET;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
if (!(conn->flags & LOCAL))
tcp_rtt_dst_check(conn, &tinfo);
if (!tcp_update_seqack_wnd(c, conn, !!flags, &tinfo) && !flags)
return 0;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*optlen = 0;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (flags & SYN) {
int mss;
if (c->mtu == -1) {
mss = tinfo.tcpi_snd_mss;
} else {
mss = c->mtu - sizeof(struct tcphdr);
if (CONN_V4(conn))
mss -= sizeof(struct iphdr);
else
mss -= sizeof(struct ipv6hdr);
if (c->low_wmem &&
!(conn->flags & LOCAL) && !tcp_rtt_dst_low(conn))
mss = MIN(mss, PAGE_SIZE);
else if (mss > PAGE_SIZE)
mss = ROUND_DOWN(mss, PAGE_SIZE);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
conn->ws_to_tap = MIN(MAX_WS, tinfo.tcpi_snd_wscale);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*opts = TCP_SYN_OPTS(mss, conn->ws_to_tap);
*optlen = sizeof(*opts);
} else if (!(flags & RST)) {
flags |= ACK;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
th->doff = (sizeof(*th) + *optlen) / 4;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
th->ack = !!(flags & ACK);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
th->rst = !!(flags & RST);
th->syn = !!(flags & SYN);
th->fin = !!(flags & FIN);
tcp: Don't reset ACK_TO_TAP_DUE on any ACK, reschedule timer as needed This is mostly symmetric with commit cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer"): we shouldn't reset the ACK_TO_TAP_DUE flag on any inbound ACK segment, but only once we acknowledge everything we received from the guest or the container. If we don't, a client might unnecessarily hold off further data, especially during slow start, and in general we won't converge to the usable bandwidth. This is very visible especially with traffic tests on links with non-negligible latency, such as in the reported issue. There, a public iperf3 server sometimes aborts the test due do what appears to be a low iperf3's --rcv-timeout (probably less than a second). Even if this doesn't happen, the throughput will converge to a fraction of the usable bandwidth. Clear ACK_TO_TAP_DUE if we acknowledged everything, set it if we didn't, and reschedule the timer in case the flag is still set as the timer expires. While at it, decrease the ACK timer interval to 10ms. A 50ms interval is short enough for any bandwidth-delay product I had in mind (local connections, or non-local connections with limited bandwidth), but here I am, testing 1gbps transfers to a peer with 100ms RTT. Indeed, we could eventually make the timer interval dependent on the current window and estimated bandwidth-delay product, but at least for the moment being, 10ms should be long enough to avoid any measurable syscall overhead, yet usable for any real-world application. Reported-by: Lukas Mrtvy <lukas.mrtvy@gmail.com> Link: https://bugs.passt.top/show_bug.cgi?id=44 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-21 23:14:58 +01:00
if (th->ack) {
if (SEQ_GE(conn->seq_ack_to_tap, conn->seq_from_tap))
conn_flag(c, conn, ~ACK_TO_TAP_DUE);
else
conn_flag(c, conn, ACK_TO_TAP_DUE);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (th->fin)
conn_flag(c, conn, ACK_FROM_TAP_DUE);
/* RFC 793, 3.1: "[...] and the first data octet is ISN+1." */
if (th->fin || th->syn)
conn->seq_to_tap++;
return 1;
}
/**
* tcp_send_flag() - Send segment with flags to tap (no payload)
* @c: Execution context
* @conn: Connection pointer
* @flags: TCP flags: if not set, send segment only if ACK is due
*
* Return: negative error code on connection reset, 0 otherwise
*/
static int tcp_send_flag(const struct ctx *c, struct tcp_tap_conn *conn,
int flags)
{
if (c->mode == MODE_VU)
return tcp_vu_send_flag(c, conn, flags);
return tcp_buf_send_flag(c, conn, flags);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
/**
* tcp_rst_do() - Reset a tap connection: send RST segment to tap, close socket
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @c: Execution context
* @conn: Connection pointer
*/
void tcp_rst_do(const struct ctx *c, struct tcp_tap_conn *conn)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
if (conn->events == CLOSED)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
return;
if (!tcp_send_flag(c, conn, RST))
conn_event(c, conn, CLOSED);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_get_tap_ws() - Get Window Scaling option for connection from tap/guest
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_get_tap_ws(struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
int ws = tcp_opt_get(opts, optlen, OPT_WS, NULL, NULL);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (ws >= 0 && ws <= TCP_WS_MAX)
conn->ws_from_tap = ws;
else
conn->ws_from_tap = 0;
}
passt: Assorted fixes from "fresh eyes" review A bunch of fixes not worth single commits at this stage, notably: - make buffer, length parameter ordering consistent in ARP, DHCP, NDP handlers - strict checking of buffer, message and option length in DHCP handler (a malicious client could have easily crashed it) - set up forwarding for IPv4 and IPv6, and masquerading with nft for IPv4, from demo script - get rid of separate slow and fast timers, we don't save any overhead that way - stricter checking of buffer lengths as passed to tap handlers - proper dequeuing from qemu socket back-end: I accidentally trashed messages that were bundled up together in a single tap read operation -- the length header tells us what's the size of the next frame, but there's no apparent limit to the number of messages we get with one single receive - rework some bits of the TCP state machine, now passive and active connection closes appear to be robust -- introduce a new FIN_WAIT_1_SOCK_FIN state indicating a FIN_WAIT_1 with a FIN flag from socket - streamline TCP option parsing routine - track TCP state changes to stderr (this is temporary, proper debugging and syslogging support pending) - observe that multiplying a number by four might very well change its value, and this happens to be the case for the data offset from the TCP header as we check if it's the same as the total length to find out if it's a duplicated ACK segment - recent estimates suggest that the duration of a millisecond is closer to a million nanoseconds than a thousand of them, this trend is now reflected into the timespec_diff_ms() convenience routine Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-21 11:33:38 +01:00
/**
* tcp_tap_window_update() - Process an updated window from tap side
* @conn: Connection pointer
* @window: Window value, host order, unscaled
*/
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
static void tcp_tap_window_update(struct tcp_tap_conn *conn, unsigned wnd)
{
wnd = MIN(MAX_WINDOW, wnd << conn->ws_from_tap);
tcp: handle shrunk window advertisements from guest A bug in kernel TCP may lead to a deadlock where a zero window is sent from the guest peer, while it is unable to send out window updates even after socket reads have freed up enough buffer space to permit a larger window. In this situation, new window advertisements from the peer can only be triggered by data packets arriving from this side. However, currently such packets are never sent, because the zero-window condition prevents this side from sending out any packets whatsoever to the peer. We notice that the above bug is triggered *only* after the peer has dropped one or more arriving packets because of severe memory squeeze, and that we hence always enter a retransmission situation when this occurs. This also means that the implementation goes against the RFC-9293 recommendation that a previously advertised window never should shrink. RFC-9293 seems to permit that we can continue sending up to the right edge of the last advertised non-zero window in such situations, so that is what we do to resolve this situation. It turns out that this solution is extremely simple to implememt in the code: We just omit to save the advertised zero-window when we see that it has shrunk, i.e., if the acknowledged sequence number in the advertisement message is lower than that of the last data byte sent from our side. When that is the case, the following happens: - The 'retr' flag in tcp_data_from_tap() will be 'false', so no retransmission will occur at this occasion. - The data stream will soon reach the right edge of the previously advertised window. In fact, in all observed cases we have seen that it is already there when the zero-advertisement arrives. - At that moment, the flags STALLED and ACK_FROM_TAP_DUE will be set, unless they already have been, meaning that only the next timer expiration will open for data retransmission or transmission. - When that happens, the memory squeeze at the guest will normally have abated, and the data flow can resume. It should be noted that although this solves the problem we have at hand, it is a work-around, and not a genuine solution to the described kernel bug. Suggested-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: Jon Maloy <jmaloy@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Minor fix in commit title and commit reference in comment to workaround Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-07-12 15:04:50 -04:00
/* Work-around for bug introduced in peer kernel code, commit
* e2142825c120 ("net: tcp: send zero-window ACK when no memory").
* We don't update if window shrank to zero.
*/
if (!wnd && SEQ_LT(conn->seq_ack_from_tap, conn->seq_to_tap))
return;
conn->wnd_from_tap = MIN(wnd >> conn->ws_from_tap, USHRT_MAX);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
/* FIXME: reflect the tap-side receiver's window back to the sock-side
* sender by adjusting SO_RCVBUF? */
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
/**
* tcp_init_seq() - Calculate initial sequence number according to RFC 6528
* @hash: Hash of connection details
udp: Connection tracking for ephemeral, local ports, and related fixes As we support UDP forwarding for packets that are sent to local ports, we actually need some kind of connection tracking for UDP. While at it, this commit introduces a number of vaguely related fixes for issues observed while trying this out. In detail: - implement an explicit, albeit minimalistic, connection tracking for UDP, to allow usage of ephemeral ports by the guest and by the host at the same time, by binding them dynamically as needed, and to allow mapping address changes for packets with a loopback address as destination - set the guest MAC address whenever we receive a packet from tap instead of waiting for an ARP request, and set it to broadcast on start, otherwise DHCPv6 might not work if all DHCPv6 requests time out before the guest starts talking IPv4 - split context IPv6 address into address we assign, global or site address seen on tap, and link-local address seen on tap, and make sure we use the addresses we've seen as destination (link-local choice depends on source address). Similarly, for IPv4, split into address we assign and address we observe, and use the address we observe as destination - introduce a clock_gettime() syscall right after epoll_wait() wakes up, so that we can remove all the other ones and pass the current timestamp to tap and socket handlers -- this is additionally needed by UDP to time out bindings to ephemeral ports and mappings between loopback address and a local address - rename sock_l4_add() to sock_l4(), no semantic changes intended - include <arpa/inet.h> in passt.c before kernel headers so that we can use <netinet/in.h> macros to check IPv6 address types, and remove a duplicate <linux/ip.h> inclusion Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 16:59:20 +02:00
* @now: Current timestamp
*/
static uint32_t tcp_init_seq(uint64_t hash, const struct timespec *now)
{
/* 32ns ticks, overflows 32 bits every 137s */
uint32_t ns = (now->tv_sec * 1000000000 + now->tv_nsec) >> 5;
return ((uint32_t)(hash >> 32) ^ (uint32_t)hash) + ns;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_conn_pool_sock() - Get socket for new connection from pre-opened pool
* @pool: Pool of pre-opened sockets
*
* Return: socket number if available, negative code if pool is empty
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
int tcp_conn_pool_sock(int pool[])
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
int s = -1, i;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
SWAP(s, pool[i]);
if (s >= 0)
return s;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
return -1;
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/**
* tcp_conn_new_sock() - Open and prepare new socket for connection
* @c: Execution context
* @af: Address family
*
* Return: socket number on success, negative code if socket creation failed
*/
static int tcp_conn_new_sock(const struct ctx *c, sa_family_t af)
{
int s;
s = socket(af, SOCK_STREAM | SOCK_NONBLOCK | SOCK_CLOEXEC, IPPROTO_TCP);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (s > FD_REF_MAX) {
close(s);
return -EIO;
}
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
if (s < 0)
return -errno;
tcp_sock_set_bufsize(c, s);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return s;
}
/**
* tcp_conn_sock() - Obtain a connectable socket in the host/init namespace
* @c: Execution context
* @af: Address family (AF_INET or AF_INET6)
*
* Return: Socket fd on success, -errno on failure
*/
int tcp_conn_sock(const struct ctx *c, sa_family_t af)
{
int *pool = af == AF_INET6 ? init_sock_pool6 : init_sock_pool4;
int s;
if ((s = tcp_conn_pool_sock(pool)) >= 0)
return s;
/* If the pool is empty we just open a new one without refilling the
* pool to keep latency down.
*/
if ((s = tcp_conn_new_sock(c, af)) >= 0)
return s;
err("TCP: Unable to open socket for new connection: %s",
strerror_(-s));
return -1;
}
/**
* tcp_conn_tap_mss() - Get MSS value advertised by tap/guest
* @conn: Connection pointer
* @opts: Pointer to start of TCP options
* @optlen: Bytes in options: caller MUST ensure available length
*
* Return: clamped MSS value
*/
tcp: Clamp MSS value when queueing data to tap, also for pasta Tom reports that a pattern of repated ~1 MiB chunks downloads over NNTP over TLS, on Podman 4.4 using pasta as network back-end, results in pasta taking one full CPU thread after a while, and the download never succeeds. On that setup, we end up re-sending the same frame over and over, with a consistent 65 534 bytes size, and never get an acknowledgement from the tap-side client. This only happens for the default MTU value (65 520 bytes) or for values that are slightly smaller than that (down to 64 499 bytes). We hit this condition because the MSS value we use in tcp_data_from_sock(), only in pasta mode, is simply clamped to USHRT_MAX, and not to the actual size of the buffers we pre-cooked for sending, which is a bit less than that. It looks like we got away with it until commit 0fb7b2b9080a ("tap: Use different io vector bases depending on tap type") fixed the setting of iov_len. Luckily, since it's pasta, we're queueing up to two frames at a time, so the worst that can happen is a badly segmented TCP stream: we always have some space at the tail of the buffer. Clamp the MSS value to the appropriate maximum given by struct tcp{4,6}_buf_data_t, no matter if we're running in pasta or passt mode. While at it, fix the comments to those structs to reflect the current struct size. This is not really relevant for any further calculation or consideration, but it's convenient to know while debugging this kind of issues. Thanks to Tom for reporting the issue in a very detailed way and for providing a test setup. Reported-by: Tom Mombourquette <tom@devnode.com> Link: https://github.com/containers/podman/issues/17703 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 18:07:42 +01:00
static uint16_t tcp_conn_tap_mss(const struct tcp_tap_conn *conn,
const char *opts, size_t optlen)
{
unsigned int mss;
int ret;
if ((ret = tcp_opt_get(opts, optlen, OPT_MSS, NULL, NULL)) < 0)
mss = MSS_DEFAULT;
else
mss = ret;
tcp: Clamp MSS value when queueing data to tap, also for pasta Tom reports that a pattern of repated ~1 MiB chunks downloads over NNTP over TLS, on Podman 4.4 using pasta as network back-end, results in pasta taking one full CPU thread after a while, and the download never succeeds. On that setup, we end up re-sending the same frame over and over, with a consistent 65 534 bytes size, and never get an acknowledgement from the tap-side client. This only happens for the default MTU value (65 520 bytes) or for values that are slightly smaller than that (down to 64 499 bytes). We hit this condition because the MSS value we use in tcp_data_from_sock(), only in pasta mode, is simply clamped to USHRT_MAX, and not to the actual size of the buffers we pre-cooked for sending, which is a bit less than that. It looks like we got away with it until commit 0fb7b2b9080a ("tap: Use different io vector bases depending on tap type") fixed the setting of iov_len. Luckily, since it's pasta, we're queueing up to two frames at a time, so the worst that can happen is a badly segmented TCP stream: we always have some space at the tail of the buffer. Clamp the MSS value to the appropriate maximum given by struct tcp{4,6}_buf_data_t, no matter if we're running in pasta or passt mode. While at it, fix the comments to those structs to reflect the current struct size. This is not really relevant for any further calculation or consideration, but it's convenient to know while debugging this kind of issues. Thanks to Tom for reporting the issue in a very detailed way and for providing a test setup. Reported-by: Tom Mombourquette <tom@devnode.com> Link: https://github.com/containers/podman/issues/17703 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 18:07:42 +01:00
if (CONN_V4(conn))
mss = MIN(MSS4, mss);
else
mss = MIN(MSS6, mss);
return MIN(mss, USHRT_MAX);
}
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
/**
* tcp_bind_outbound() - Bind socket to outbound address and interface if given
* @c: Execution context
* @conn: Connection entry for socket to bind
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
* @s: Outbound TCP socket
*/
static void tcp_bind_outbound(const struct ctx *c,
const struct tcp_tap_conn *conn, int s)
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
{
const struct flowside *tgt = &conn->f.side[TGTSIDE];
union sockaddr_inany bind_sa;
socklen_t sl;
pif_sockaddr(c, &bind_sa, &sl, PIF_HOST, &tgt->oaddr, tgt->oport);
if (!inany_is_unspecified(&tgt->oaddr) || tgt->oport) {
if (bind(s, &bind_sa.sa, sl)) {
char sstr[INANY_ADDRSTRLEN];
flow_dbg(conn,
"Can't bind TCP outbound socket to %s:%hu: %s",
inany_ntop(&tgt->oaddr, sstr, sizeof(sstr)),
tgt->oport, strerror_(errno));
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
}
}
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
if (bind_sa.sa_family == AF_INET) {
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
if (*c->ip4.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip4.ifname_out,
strlen(c->ip4.ifname_out))) {
flow_dbg(conn, "Can't bind IPv4 TCP socket to"
" interface %s: %s", c->ip4.ifname_out,
strerror_(errno));
}
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
}
} else if (bind_sa.sa_family == AF_INET6) {
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
if (*c->ip6.ifname_out) {
if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE,
c->ip6.ifname_out,
strlen(c->ip6.ifname_out))) {
flow_dbg(conn, "Can't bind IPv6 TCP socket to"
" interface %s: %s", c->ip6.ifname_out,
strerror_(errno));
}
conf, icmp, tcp, udp: Add options to bind to outbound address and interface I didn't notice earlier: libslirp (and slirp4netns) supports binding outbound sockets to specific IPv4 and IPv6 addresses, to force the source addresse selection. If we want to claim feature parity, we should implement that as well. Further, Podman supports specifying outbound interfaces as well, but this is simply done by resolving the primary address for an interface when the network back-end is started. However, since kernel version 5.7, commit c427bfec18f2 ("net: core: enable SO_BINDTODEVICE for non-root users"), we can actually bind to a specific interface name, which doesn't need to be validated in advance. Implement -o / --outbound ADDR to bind to IPv4 and IPv6 addresses, and --outbound-if4 and --outbound-if6 to bind IPv4 and IPv6 sockets to given interfaces. Given that it probably makes little sense to select addresses and routes from interfaces different than the ones given for outbound sockets, also assign those as "template" interfaces, by default, unless explicitly overridden by '-i'. For ICMP and UDP, we call sock_l4() to open outbound sockets, as we already needed to bind to given ports or echo identifiers, and we can bind() a socket only once: there, pass address (if any) and interface (if any) for the existing bind() and setsockopt() calls. For TCP, in general, we wouldn't otherwise bind sockets. Add a specific helper to do that. For UDP outbound sockets, we need to know if the final destination of the socket is a loopback address, before we decide whether it makes sense to bind the socket at all: move the block mangling the address destination before the creation of the socket in the IPv4 path. This was already the case for the IPv6 path. Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 03:29:51 +01:00
}
}
}
/**
* tcp_conn_from_tap() - Handle connection request (SYN segment) from tap
* @c: Execution context
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address, pointer to in_addr or in6_addr
* @daddr: Destination address, pointer to in_addr or in6_addr
* @th: TCP header from tap: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
* @now: Current timestamp
*/
static void tcp_conn_from_tap(const struct ctx *c, sa_family_t af,
const void *saddr, const void *daddr,
const struct tcphdr *th, const char *opts,
size_t optlen, const struct timespec *now)
{
in_port_t srcport = ntohs(th->source);
in_port_t dstport = ntohs(th->dest);
const struct flowside *ini, *tgt;
struct tcp_tap_conn *conn;
union sockaddr_inany sa;
union flow *flow;
int s = -1, mss;
uint64_t hash;
socklen_t sl;
if (!(flow = flow_alloc()))
return;
ini = flow_initiate_af(flow, PIF_TAP,
af, saddr, srcport, daddr, dstport);
if (!(tgt = flow_target(c, flow, IPPROTO_TCP)))
goto cancel;
if (flow->f.pif[TGTSIDE] != PIF_HOST) {
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
tcp: Don't rely on bind() to fail to decide that connection target is valid Commit e1a2e2780c91 ("tcp: Check if connection is local or low RTT was seen before using large MSS") added a call to bind() before we issue a connect() to the target for an outbound connection. If bind() fails, but neither with EADDRNOTAVAIL, nor with EACCESS, we can conclude that the target address is a local (host) address, and we can use an unlimited MSS. While at it, according to the reasoning of that commit, if bind() succeeds, we would know right away that nobody is listening at that (local) address and port, and we don't even need to call connect(): we can just fail early and reset the connection attempt. But if non-local binds are enabled via net.ipv4.ip_nonlocal_bind or net.ipv6.ip_nonlocal_bind sysctl, binding to a non-local address will actually succeed, so we can't rely on it to fail in general. The visible issue with the existing behaviour is that we would reset any outbound connection to non-local addresses, if non-local binds are enabled. Keep the significant optimisation for local addresses along with the bind() call, but if it succeeds, don't draw any conclusion: close the socket, grab another one, and proceed normally. This will incur a small latency penalty if non-local binds are enabled (we'll likely fetch an existing socket from the pool but additionally call close()), or if the target is local but not bound: we'll need to call connect() and get a failure before relaying that failure back. Link: https://github.com/containers/podman/issues/23003 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-06-18 12:32:17 +02:00
conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0 ||
!inany_is_unicast(&ini->oaddr) || ini->oport == 0) {
char sstr[INANY_ADDRSTRLEN], dstr[INANY_ADDRSTRLEN];
debug("Invalid endpoint in TCP SYN: %s:%hu -> %s:%hu",
inany_ntop(&ini->eaddr, sstr, sizeof(sstr)), ini->eport,
inany_ntop(&ini->oaddr, dstr, sizeof(dstr)), ini->oport);
goto cancel;
}
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
pif_sockaddr(c, &sa, &sl, PIF_HOST, &tgt->eaddr, tgt->eport);
tcp: Don't rely on bind() to fail to decide that connection target is valid Commit e1a2e2780c91 ("tcp: Check if connection is local or low RTT was seen before using large MSS") added a call to bind() before we issue a connect() to the target for an outbound connection. If bind() fails, but neither with EADDRNOTAVAIL, nor with EACCESS, we can conclude that the target address is a local (host) address, and we can use an unlimited MSS. While at it, according to the reasoning of that commit, if bind() succeeds, we would know right away that nobody is listening at that (local) address and port, and we don't even need to call connect(): we can just fail early and reset the connection attempt. But if non-local binds are enabled via net.ipv4.ip_nonlocal_bind or net.ipv6.ip_nonlocal_bind sysctl, binding to a non-local address will actually succeed, so we can't rely on it to fail in general. The visible issue with the existing behaviour is that we would reset any outbound connection to non-local addresses, if non-local binds are enabled. Keep the significant optimisation for local addresses along with the bind() call, but if it succeeds, don't draw any conclusion: close the socket, grab another one, and proceed normally. This will incur a small latency penalty if non-local binds are enabled (we'll likely fetch an existing socket from the pool but additionally call close()), or if the target is local but not bound: we'll need to call connect() and get a failure before relaying that failure back. Link: https://github.com/containers/podman/issues/23003 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-06-18 12:32:17 +02:00
/* Use bind() to check if the target address is local (EADDRINUSE or
* similar) and already bound, and set the LOCAL flag in that case.
*
* If bind() succeeds, in general, we could infer that nobody (else) is
* listening on that address and port and reset the connection attempt
* early, but we can't rely on that if non-local binds are enabled,
* because bind() would succeed for any non-local address we can reach.
*
* So, if bind() succeeds, close the socket, get a new one, and proceed.
*/
if (bind(s, &sa.sa, sl)) {
tcp: Don't rely on bind() to fail to decide that connection target is valid Commit e1a2e2780c91 ("tcp: Check if connection is local or low RTT was seen before using large MSS") added a call to bind() before we issue a connect() to the target for an outbound connection. If bind() fails, but neither with EADDRNOTAVAIL, nor with EACCESS, we can conclude that the target address is a local (host) address, and we can use an unlimited MSS. While at it, according to the reasoning of that commit, if bind() succeeds, we would know right away that nobody is listening at that (local) address and port, and we don't even need to call connect(): we can just fail early and reset the connection attempt. But if non-local binds are enabled via net.ipv4.ip_nonlocal_bind or net.ipv6.ip_nonlocal_bind sysctl, binding to a non-local address will actually succeed, so we can't rely on it to fail in general. The visible issue with the existing behaviour is that we would reset any outbound connection to non-local addresses, if non-local binds are enabled. Keep the significant optimisation for local addresses along with the bind() call, but if it succeeds, don't draw any conclusion: close the socket, grab another one, and proceed normally. This will incur a small latency penalty if non-local binds are enabled (we'll likely fetch an existing socket from the pool but additionally call close()), or if the target is local but not bound: we'll need to call connect() and get a failure before relaying that failure back. Link: https://github.com/containers/podman/issues/23003 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-06-18 12:32:17 +02:00
if (errno != EADDRNOTAVAIL && errno != EACCES)
conn_flag(c, conn, LOCAL);
} else {
/* Not a local, bound destination, inconclusive test */
close(s);
if ((s = tcp_conn_sock(c, af)) < 0)
goto cancel;
}
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
conn->sock = s;
conn->timer = -1;
conn_event(c, conn, TAP_SYN_RCVD);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
conn->wnd_to_tap = WINDOW_DEFAULT;
tcp: Clamp MSS value when queueing data to tap, also for pasta Tom reports that a pattern of repated ~1 MiB chunks downloads over NNTP over TLS, on Podman 4.4 using pasta as network back-end, results in pasta taking one full CPU thread after a while, and the download never succeeds. On that setup, we end up re-sending the same frame over and over, with a consistent 65 534 bytes size, and never get an acknowledgement from the tap-side client. This only happens for the default MTU value (65 520 bytes) or for values that are slightly smaller than that (down to 64 499 bytes). We hit this condition because the MSS value we use in tcp_data_from_sock(), only in pasta mode, is simply clamped to USHRT_MAX, and not to the actual size of the buffers we pre-cooked for sending, which is a bit less than that. It looks like we got away with it until commit 0fb7b2b9080a ("tap: Use different io vector bases depending on tap type") fixed the setting of iov_len. Luckily, since it's pasta, we're queueing up to two frames at a time, so the worst that can happen is a badly segmented TCP stream: we always have some space at the tail of the buffer. Clamp the MSS value to the appropriate maximum given by struct tcp{4,6}_buf_data_t, no matter if we're running in pasta or passt mode. While at it, fix the comments to those structs to reflect the current struct size. This is not really relevant for any further calculation or consideration, but it's convenient to know while debugging this kind of issues. Thanks to Tom for reporting the issue in a very detailed way and for providing a test setup. Reported-by: Tom Mombourquette <tom@devnode.com> Link: https://github.com/containers/podman/issues/17703 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 18:07:42 +01:00
mss = tcp_conn_tap_mss(conn, opts, optlen);
if (setsockopt(s, SOL_TCP, TCP_MAXSEG, &mss, sizeof(mss)))
flow_trace(conn, "failed to set TCP_MAXSEG on socket %i", s);
MSS_SET(conn, mss);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
tcp_get_tap_ws(conn, opts, optlen);
/* RFC 7323, 2.2: first value is not scaled. Also, don't clamp yet, to
* avoid getting a zero scale just because we set a small window now.
*/
if (!(conn->wnd_from_tap = (htons(th->window) >> conn->ws_from_tap)))
conn->wnd_from_tap = 1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
conn->seq_init_from_tap = ntohl(th->seq);
conn->seq_from_tap = conn->seq_init_from_tap + 1;
conn->seq_ack_to_tap = conn->seq_from_tap;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
tcp: Don't special case the handling of the ack of a syn TCP treats the SYN packets as though they occupied 1 byte in the logical data stream described by the sequence numbers. That is, the very first ACK (or SYN-ACK) each side sends should acknowledge a sequence number one greater than the initial sequence number given in the SYN or SYN-ACK it's responding to. In passt we were tracking that by advancing conn->seq_to_tap by one when we send a SYN or SYN-ACK (in tcp_send_flag()). However, we also initialized conn->seq_ack_from_tap, representing the acks we've already seen from the tap side, to ISN+1, meaning we treated it has having acknowledged the SYN before it actually did. There were apparently reasons for this in earlier versions, but it causes problems now. Because of this when we actually did receive the initial ACK or SYN-ACK, we wouldn't see the acknoweldged serial number as advancing, and so wouldn't clear the ACK_FROM_TAP_DUE flag. In most cases we'd get away because subsequent packets would clear the flag. However if one (or both) sides didn't send any data, the other side would (correctly) keep sending ISN+1 as the acknowledged sequence number, meaning we would never clear the ACK_FROM_TAP_DUE flag. That would mean we'd treat the connection as if we needed to retransmit (although we had 0 bytes to retransmit), and eventaully (after around 30s) reset the connection due to too many retransmits. Specifically this could cause the iperf3 throughput tests in the testsuite to fail if set for a long enough test period. Correct this by initializing conn->seq_ack_from_tap to the ISN and only advancing it when we actually get the first ACK (or SYN-ACK). Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-27 14:56:34 +11:00
conn->seq_ack_from_tap = conn->seq_to_tap;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
tcp_bind_outbound(c, conn, s);
if (connect(s, &sa.sa, sl)) {
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (errno != EINPROGRESS) {
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp_rst(c, conn);
goto cancel;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
tcp_get_sndbuf(conn);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
} else {
tcp_get_sndbuf(conn);
if (tcp_send_flag(c, conn, SYN | ACK))
goto cancel;
conn_event(c, conn, TAP_SYN_ACK_SENT);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
tcp_epoll_ctl(c, conn);
FLOW_ACTIVATE(conn);
return;
cancel:
if (s >= 0)
close(s);
flow_alloc_cancel(flow);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
/**
* tcp_sock_consume() - Consume (discard) data from buffer
* @conn: Connection pointer
* @ack_seq: ACK sequence, host order
*
* Return: 0 on success, negative error code from recv() on failure
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
#ifdef VALGRIND
/* valgrind doesn't realise that passing a NULL buffer to recv() is ok if using
* MSG_TRUNC. We have a suppression for this in the tests, but it relies on
* valgrind being able to see the tcp_sock_consume() stack frame, which it won't
* if this gets inlined. This has a single caller making it a likely inlining
* candidate, and certain compiler versions will do so even at -O0.
*/
__attribute__((noinline))
#endif /* VALGRIND */
static int tcp_sock_consume(const struct tcp_tap_conn *conn, uint32_t ack_seq)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
/* Simply ignore out-of-order ACKs: we already consumed the data we
* needed from the buffer, and we won't rewind back to a lower ACK
* sequence.
*/
if (SEQ_LE(ack_seq, conn->seq_ack_from_tap))
return 0;
/* cppcheck-suppress [nullPointer, unmatchedSuppression] */
if (recv(conn->sock, NULL, ack_seq - conn->seq_ack_from_tap,
MSG_DONTWAIT | MSG_TRUNC) < 0)
return -errno;
return 0;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_data_from_sock() - Handle new data from socket, queue to tap, in window
* @c: Execution context
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @conn: Connection pointer
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*
* Return: negative on connection reset, 0 otherwise
*
* #syscalls recvmsg
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
static int tcp_data_from_sock(const struct ctx *c, struct tcp_tap_conn *conn)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
if (c->mode == MODE_VU)
return tcp_vu_data_from_sock(c, conn);
return tcp_buf_data_from_sock(c, conn);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
/**
* tcp_data_from_tap() - tap/guest data for established connection
* @c: Execution context
* @conn: Connection pointer
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first data packet in pool
*
* #syscalls sendmsg
*
* Return: count of consumed packets
*/
static int tcp_data_from_tap(const struct ctx *c, struct tcp_tap_conn *conn,
const struct pool *p, int idx)
{
int i, iov_i, ack = 0, fin = 0, retr = 0, keep = -1, partial_send = 0;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
uint16_t max_ack_seq_wnd = conn->wnd_from_tap;
uint32_t max_ack_seq = conn->seq_ack_from_tap;
uint32_t seq_from_tap = conn->seq_from_tap;
struct msghdr mh = { .msg_iov = tcp_iov };
size_t len;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
ssize_t n;
if (conn->events == CLOSED)
return p->count - idx;
ASSERT(conn->events & ESTABLISHED);
for (i = idx, iov_i = 0; i < (int)p->count; i++) {
uint32_t seq, seq_offset, ack_seq;
const struct tcphdr *th;
char *data;
size_t off;
th = packet_get(p, i, 0, sizeof(*th), &len);
if (!th)
return -1;
len += sizeof(*th);
off = th->doff * 4UL;
if (off < sizeof(*th) || off > len)
return -1;
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
}
len -= off;
data = packet_get(p, i, off, len, NULL);
if (!data)
continue;
seq = ntohl(th->seq);
tcp: Acknowledge keep-alive segments, ignore them for the rest RFC 9293, 3.8.4 says: Implementers MAY include "keep-alives" in their TCP implementations (MAY-5), although this practice is not universally accepted. Some TCP implementations, however, have included a keep-alive mechanism. To confirm that an idle connection is still active, these implementations send a probe segment designed to elicit a response from the TCP peer. Such a segment generally contains SEG.SEQ = SND.NXT-1 and may or may not contain one garbage octet of data. If keep-alives are included, the application MUST be able to turn them on or off for each TCP connection (MUST-24), and they MUST default to off (MUST-25). but currently, tcp_data_from_tap() is not aware of this and will schedule a fast re-transmit on the second keep-alive (because it's also a duplicate ACK), ignoring the fact that the sequence number was rewinded to SND.NXT-1. ACK these keep-alive segments, reset the activity timeout, and ignore them for the rest. At some point, we could think of implementing an approximation of keep-alive segments on outbound sockets, for example by setting TCP_KEEPIDLE to 1, and a large TCP_KEEPINTVL, so that we send a single keep-alive segment at approximately the same time, and never reset the connection. That's beyond the scope of this fix, though. Reported-by: Tim Besard <tim.besard@gmail.com> Link: https://github.com/containers/podman/discussions/24572 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2024-11-19 20:53:44 +01:00
if (SEQ_LT(seq, conn->seq_from_tap) && len <= 1) {
flow_trace(conn,
"keep-alive sequence: %u, previous: %u",
seq, conn->seq_from_tap);
tcp_send_flag(c, conn, ACK);
tcp_timer_ctl(c, conn);
if (p->count == 1)
return 1;
continue;
}
ack_seq = ntohl(th->ack_seq);
if (th->ack) {
ack = 1;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (SEQ_GE(ack_seq, conn->seq_ack_from_tap) &&
SEQ_GE(ack_seq, max_ack_seq)) {
/* Fast re-transmit */
retr = !len && !th->fin &&
ack_seq == max_ack_seq &&
ntohs(th->window) == max_ack_seq_wnd;
max_ack_seq_wnd = ntohs(th->window);
max_ack_seq = ack_seq;
}
}
if (th->fin)
fin = 1;
if (!len)
continue;
seq_offset = seq_from_tap - seq;
/* Use data from this buffer only in these two cases:
*
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '----' <-- offset ' <-- offset
* ^ seq ^ seq
* (offset >= 0, seq + len > seq_from_tap)
*
* discard in these two cases:
* , seq_from_tap , seq_from_tap
* |--------| <-- len |--------| <-- len
* '--------' <-- offset '-----| <- offset
* ^ seq ^ seq
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* (offset >= 0, seq + len <= seq_from_tap)
*
* keep, look for another buffer, then go back, in this case:
* , seq_from_tap
* |--------| <-- len
* '===' <-- offset
* ^ seq
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* (offset < 0)
*/
if (SEQ_GE(seq_offset, 0) && SEQ_LE(seq + len, seq_from_tap))
continue;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (SEQ_LT(seq_offset, 0)) {
if (keep == -1)
keep = i;
continue;
}
tcp_iov[iov_i].iov_base = data + seq_offset;
tcp_iov[iov_i].iov_len = len - seq_offset;
seq_from_tap += tcp_iov[iov_i].iov_len;
iov_i++;
if (keep == i)
keep = -1;
if (keep != -1)
i = keep - 1;
}
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
/* On socket flush failure, pretend there was no ACK, try again later */
if (ack && !tcp_sock_consume(conn, max_ack_seq))
tcp_update_seqack_from_tap(c, conn, max_ack_seq);
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
tcp_tap_window_update(conn, max_ack_seq_wnd);
tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag It looks like we need it as workaround for this situation, readily reproducible at least with a 6.5 Linux kernel, with default rmem_max and wmem_max values: - an iperf3 client on the host sends about 160 KiB, typically segmented into five frames by passt. We read this data using MSG_PEEK - the iperf3 server on the guest starts receiving - meanwhile, the host kernel advertised a zero-sized window to the sender, as expected - eventually, the guest acknowledges all the data sent so far, and we drop it from the buffer, courtesy of tcp_sock_consume(), using recv() with MSG_TRUNC - the client, however, doesn't get an updated window value, and even keepalive packets are answered with zero-window segments, until the connection is closed It looks like dropping data from a socket using MSG_TRUNC doesn't cause a recalculation of the window, which would be expected as a result of any receiving operation that invalidates data on a buffer (that is, not with MSG_PEEK). Strangely enough, setting TCP_WINDOW_CLAMP via setsockopt(), even to the previous value we clamped to, forces a recalculation of the window which is advertised to the sender. I couldn't quite confirm this issue by following all the possible code paths in the kernel, yet. If confirmed, this should be fixed in the kernel, but meanwhile this workaround looks robust to me (and it will be needed for backward compatibility anyway). Reported-by: Matej Hrica <mhrica@redhat.com> Link: https://bugs.passt.top/show_bug.cgi?id=74 Analysed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-09-22 23:21:20 +02:00
if (retr) {
flow_trace(conn,
"fast re-transmit, ACK: %u, previous sequence: %u",
max_ack_seq, conn->seq_to_tap);
conn->seq_to_tap = max_ack_seq;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return -1;
}
tcp_data_from_sock(c, conn);
}
if (!iov_i)
goto out;
mh.msg_iovlen = iov_i;
eintr:
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
n = sendmsg(conn->sock, &mh, MSG_DONTWAIT | MSG_NOSIGNAL);
if (n < 0) {
if (errno == EPIPE) {
/* Here's the wrap, said the tap.
* In my pocket, said the socket.
* Then swiftly looked away and left.
*/
conn->seq_from_tap = seq_from_tap;
tcp_send_flag(c, conn, ACK);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
if (errno == EINTR)
goto eintr;
if (errno == EAGAIN || errno == EWOULDBLOCK) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
return p->count - idx;
}
return -1;
}
if (n < (int)(seq_from_tap - conn->seq_from_tap)) {
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
partial_send = 1;
conn->seq_from_tap += n;
tcp_send_flag(c, conn, ACK_IF_NEEDED);
} else {
conn->seq_from_tap += n;
}
out:
if (keep != -1) {
/* We use an 8-bit approximation here: the associated risk is
* that we skip a duplicate ACK on 8-bit sequence number
* collision. Fast retransmit is a SHOULD in RFC 5681, 3.2.
*/
if (conn->seq_dup_ack_approx != (conn->seq_from_tap & 0xff)) {
conn->seq_dup_ack_approx = conn->seq_from_tap & 0xff;
tcp_send_flag(c, conn, ACK | DUP_ACK);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
return p->count - idx;
}
if (ack && conn->events & TAP_FIN_SENT &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, TAP_FIN_ACKED);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (fin && !partial_send) {
conn->seq_from_tap++;
conn_event(c, conn, TAP_FIN_RCVD);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
} else {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
}
return p->count - idx;
}
/**
* tcp_conn_from_sock_finish() - Complete connection setup after connect()
* @c: Execution context
* @conn: Connection pointer
* @th: TCP header of SYN, ACK segment: caller MUST ensure it's there
* @opts: Pointer to start of options
* @optlen: Bytes in options: caller MUST ensure available length
*/
static void tcp_conn_from_sock_finish(const struct ctx *c,
struct tcp_tap_conn *conn,
const struct tcphdr *th,
const char *opts, size_t optlen)
{
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
tcp_tap_window_update(conn, ntohs(th->window));
tcp_get_tap_ws(conn, opts, optlen);
/* First value is not scaled */
if (!(conn->wnd_from_tap >>= conn->ws_from_tap))
conn->wnd_from_tap = 1;
tcp: Clamp MSS value when queueing data to tap, also for pasta Tom reports that a pattern of repated ~1 MiB chunks downloads over NNTP over TLS, on Podman 4.4 using pasta as network back-end, results in pasta taking one full CPU thread after a while, and the download never succeeds. On that setup, we end up re-sending the same frame over and over, with a consistent 65 534 bytes size, and never get an acknowledgement from the tap-side client. This only happens for the default MTU value (65 520 bytes) or for values that are slightly smaller than that (down to 64 499 bytes). We hit this condition because the MSS value we use in tcp_data_from_sock(), only in pasta mode, is simply clamped to USHRT_MAX, and not to the actual size of the buffers we pre-cooked for sending, which is a bit less than that. It looks like we got away with it until commit 0fb7b2b9080a ("tap: Use different io vector bases depending on tap type") fixed the setting of iov_len. Luckily, since it's pasta, we're queueing up to two frames at a time, so the worst that can happen is a badly segmented TCP stream: we always have some space at the tail of the buffer. Clamp the MSS value to the appropriate maximum given by struct tcp{4,6}_buf_data_t, no matter if we're running in pasta or passt mode. While at it, fix the comments to those structs to reflect the current struct size. This is not really relevant for any further calculation or consideration, but it's convenient to know while debugging this kind of issues. Thanks to Tom for reporting the issue in a very detailed way and for providing a test setup. Reported-by: Tom Mombourquette <tom@devnode.com> Link: https://github.com/containers/podman/issues/17703 Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-03-08 18:07:42 +01:00
MSS_SET(conn, tcp_conn_tap_mss(conn, opts, optlen));
conn->seq_init_from_tap = ntohl(th->seq) + 1;
conn->seq_from_tap = conn->seq_init_from_tap;
conn->seq_ack_to_tap = conn->seq_from_tap;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
return;
}
tcp_send_flag(c, conn, ACK);
/* The client might have sent data already, which we didn't
* dequeue waiting for SYN,ACK from tap -- check now.
*/
tcp_data_from_sock(c, conn);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_tap_handler() - Handle packets from tap and state transitions
* @c: Execution context
* @pif: pif on which the packet is arriving
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @af: Address family, AF_INET or AF_INET6
* @saddr: Source address
* @daddr: Destination address
* @p: Pool of TCP packets, with TCP headers
* @idx: Index of first packet in pool to process
udp: Connection tracking for ephemeral, local ports, and related fixes As we support UDP forwarding for packets that are sent to local ports, we actually need some kind of connection tracking for UDP. While at it, this commit introduces a number of vaguely related fixes for issues observed while trying this out. In detail: - implement an explicit, albeit minimalistic, connection tracking for UDP, to allow usage of ephemeral ports by the guest and by the host at the same time, by binding them dynamically as needed, and to allow mapping address changes for packets with a loopback address as destination - set the guest MAC address whenever we receive a packet from tap instead of waiting for an ARP request, and set it to broadcast on start, otherwise DHCPv6 might not work if all DHCPv6 requests time out before the guest starts talking IPv4 - split context IPv6 address into address we assign, global or site address seen on tap, and link-local address seen on tap, and make sure we use the addresses we've seen as destination (link-local choice depends on source address). Similarly, for IPv4, split into address we assign and address we observe, and use the address we observe as destination - introduce a clock_gettime() syscall right after epoll_wait() wakes up, so that we can remove all the other ones and pass the current timestamp to tap and socket handlers -- this is additionally needed by UDP to time out bindings to ephemeral ports and mappings between loopback address and a local address - rename sock_l4_add() to sock_l4(), no semantic changes intended - include <arpa/inet.h> in passt.c before kernel headers so that we can use <netinet/in.h> macros to check IPv6 address types, and remove a duplicate <linux/ip.h> inclusion Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-04-29 16:59:20 +02:00
* @now: Current timestamp
*
* Return: count of consumed packets
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
int tcp_tap_handler(const struct ctx *c, uint8_t pif, sa_family_t af,
const void *saddr, const void *daddr,
const struct pool *p, int idx, const struct timespec *now)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
struct tcp_tap_conn *conn;
const struct tcphdr *th;
size_t optlen, len;
const char *opts;
union flow *flow;
flow_sidx_t sidx;
int ack_due = 0;
int count;
(void)pif;
th = packet_get(p, idx, 0, sizeof(*th), &len);
if (!th)
return 1;
len += sizeof(*th);
optlen = th->doff * 4UL - sizeof(*th);
/* Static checkers might fail to see this: */
optlen = MIN(optlen, ((1UL << 4) /* from doff width */ - 6) * 4UL);
opts = packet_get(p, idx, sizeof(*th), optlen, NULL);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
sidx = flow_lookup_af(c, IPPROTO_TCP, PIF_TAP, af, saddr, daddr,
ntohs(th->source), ntohs(th->dest));
flow = flow_at_sidx(sidx);
/* New connection from tap */
if (!flow) {
if (opts && th->syn && !th->ack)
tcp_conn_from_tap(c, af, saddr, daddr, th,
opts, optlen, now);
return 1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
ASSERT(flow->f.type == FLOW_TCP);
ASSERT(pif_at_sidx(sidx) == PIF_TAP);
conn = &flow->tcp;
flow_trace(conn, "packet length %zu from tap", len);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (th->rst) {
conn_event(c, conn, CLOSED);
return 1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
if (th->ack && !(conn->events & ESTABLISHED))
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
/* Establishing connection from socket */
if (conn->events & SOCK_ACCEPTED) {
if (th->syn && th->ack && !th->fin) {
tcp_conn_from_sock_finish(c, conn, th, opts, optlen);
return 1;
}
goto reset;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/* Establishing connection from tap */
if (conn->events & TAP_SYN_RCVD) {
if (!(conn->events & TAP_SYN_ACK_SENT))
goto reset;
conn_event(c, conn, ESTABLISHED);
if (tcp_set_peek_offset(conn->sock, 0))
goto reset;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
if (th->fin) {
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
conn->seq_from_tap++;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
shutdown(conn->sock, SHUT_WR);
tcp_send_flag(c, conn, ACK);
conn_event(c, conn, SOCK_FIN_SENT);
return 1;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
if (!th->ack)
goto reset;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
tcp: Don't use TCP_WINDOW_CLAMP On the L2 tap side, we see TCP headers and know the TCP window that the ultimate receiver is advertising. In order to avoid unnecessary buffering within passt/pasta (or by the kernel on passt/pasta's behalf) we attempt to advertise that window back to the original sock-side sender using TCP_WINDOW_CLAMP. However, TCP_WINDOW_CLAMP just doesn't work like this. Prior to kernel commit 3aa7857fe1d7 ("tcp: enable mid stream window clamp"), it simply had no effect on established sockets. After that commit, it does affect established sockets but doesn't behave the way we need: * It appears to be designed only to shrink the window, not to allow it to re-expand. * More importantly, that commit has a serious bug where if the setsockopt() is made when the existing kernel advertised window for the socket happens to be zero, it will now become locked at zero, stopping any further data from being received on the socket. Since this has never worked as intended, simply remove it. It might be possible to re-implement the intended behaviour by manipulating SO_RCVBUF, so we leave a comment to that effect. This kernel bug is the underlying cause of both the linked passt bug and the linked podman bug. We attempted to fix this before with passt commit d3192f67 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag"). However while that commit masked the bug for some cases, it didn't really address the problem. Fixes: d3192f67c492 ("tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag") Link: https://github.com/containers/podman/issues/20170 Link: https://bugs.passt.top/show_bug.cgi?id=74 Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-11-09 20:54:00 +11:00
tcp_tap_window_update(conn, ntohs(th->window));
tcp_data_from_sock(c, conn);
if (p->count - idx == 1)
return 1;
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/* Established connections not accepting data from tap */
if (conn->events & TAP_FIN_RCVD) {
tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer David reports that TCP transfers might stall, especially with smaller socket buffer sizes, because we reset the ACK_FROM_TAP_DUE flag, in tcp_tap_handler(), whenever we receive an ACK segment, regardless of its sequence number and the fact that we might still be waiting for one. This way, we might fail to re-transmit frames on ACK timeouts. We need, instead, to: - indicate with the @retrans field only re-transmissions for the same data sequences. If we make progress, it should be reset, given that it's used to abort a connection when we exceed a given number of re-transmissions for the same data - unset the ACK_FROM_TAP_DUE flag if and only if the acknowledged sequence is the same as the last one we sent, as suggested by David - keep it set otherwise, if progress was done but not all the data we sent was acknowledged, and update the expiration of the ACK timeout Add a new helper for these purposes, tcp_update_seqack_from_tap(). To extend the ACK timeout, the new helper sets the ACK_FROM_TAP_DUE flag, even if it was already set, and conn_flag_do() triggers a timer update. This part should be revisited at a later time, because, strictly speaking, ACK_FROM_TAP_DUE isn't a flag anymore. One possibility might be to introduce another connection attribute for events affecting timer deadlines. Reported-by: David Gibson <david@gibson.dropbear.id.au> Link: https://bugs.passt.top/show_bug.cgi?id=41 Suggested-by: David Gibson <david@gibson.dropbear.id.au> Fixes: be5bbb9b0681 ("tcp: Rework timers to use timerfd instead of periodic bitmap scan") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-02-12 22:26:55 +01:00
tcp_update_seqack_from_tap(c, conn, ntohl(th->ack_seq));
if (conn->events & SOCK_FIN_RCVD &&
conn->seq_ack_from_tap == conn->seq_to_tap)
conn_event(c, conn, CLOSED);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return 1;
}
/* Established connections accepting data from tap */
count = tcp_data_from_tap(c, conn, p, idx);
if (count == -1)
goto reset;
tcp: Force TCP_WINDOW_CLAMP before resetting STALLED flag It looks like we need it as workaround for this situation, readily reproducible at least with a 6.5 Linux kernel, with default rmem_max and wmem_max values: - an iperf3 client on the host sends about 160 KiB, typically segmented into five frames by passt. We read this data using MSG_PEEK - the iperf3 server on the guest starts receiving - meanwhile, the host kernel advertised a zero-sized window to the sender, as expected - eventually, the guest acknowledges all the data sent so far, and we drop it from the buffer, courtesy of tcp_sock_consume(), using recv() with MSG_TRUNC - the client, however, doesn't get an updated window value, and even keepalive packets are answered with zero-window segments, until the connection is closed It looks like dropping data from a socket using MSG_TRUNC doesn't cause a recalculation of the window, which would be expected as a result of any receiving operation that invalidates data on a buffer (that is, not with MSG_PEEK). Strangely enough, setting TCP_WINDOW_CLAMP via setsockopt(), even to the previous value we clamped to, forces a recalculation of the window which is advertised to the sender. I couldn't quite confirm this issue by following all the possible code paths in the kernel, yet. If confirmed, this should be fixed in the kernel, but meanwhile this workaround looks robust to me (and it will be needed for backward compatibility anyway). Reported-by: Matej Hrica <mhrica@redhat.com> Link: https://bugs.passt.top/show_bug.cgi?id=74 Analysed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
2023-09-22 23:21:20 +02:00
conn_flag(c, conn, ~STALLED);
if (conn->seq_ack_to_tap != conn->seq_from_tap)
ack_due = 1;
if ((conn->events & TAP_FIN_RCVD) && !(conn->events & SOCK_FIN_SENT)) {
shutdown(conn->sock, SHUT_WR);
conn_event(c, conn, SOCK_FIN_SENT);
tcp_send_flag(c, conn, ACK);
ack_due = 0;
}
if (ack_due)
conn_flag(c, conn, ACK_TO_TAP_DUE);
return count;
reset:
/* Something's gone wrong, so reset the connection. We discard
* remaining packets in the batch, since they'd be invalidated when our
* RST is received, even if otherwise good.
*/
tcp_rst(c, conn);
return p->count - idx;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
/**
* tcp_connect_finish() - Handle completion of connect() from EPOLLOUT event
* @c: Execution context
* @conn: Connection pointer
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
static void tcp_connect_finish(const struct ctx *c, struct tcp_tap_conn *conn)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
socklen_t sl;
int so;
sl = sizeof(so);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
if (getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, &so, &sl) || so) {
tcp_rst(c, conn);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
return;
}
if (tcp_send_flag(c, conn, SYN | ACK))
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
return;
conn_event(c, conn, TAP_SYN_ACK_SENT);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
/**
* tcp_tap_conn_from_sock() - Initialize state for non-spliced connection
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @c: Execution context
* @flow: flow to initialise
* @s: Accepted socket
* @sa: Peer socket address (from accept())
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @now: Current timestamp
*/
static void tcp_tap_conn_from_sock(const struct ctx *c, union flow *flow,
int s, const struct timespec *now)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
struct tcp_tap_conn *conn = FLOW_SET_TYPE(flow, FLOW_TCP, tcp);
uint64_t hash;
conn->sock = s;
conn->timer = -1;
conn->ws_to_tap = conn->ws_from_tap = 0;
conn_event(c, conn, SOCK_ACCEPTED);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
hash = flow_hash_insert(c, TAP_SIDX(conn));
conn->seq_to_tap = tcp_init_seq(hash, now);
tcp: Don't special case the handling of the ack of a syn TCP treats the SYN packets as though they occupied 1 byte in the logical data stream described by the sequence numbers. That is, the very first ACK (or SYN-ACK) each side sends should acknowledge a sequence number one greater than the initial sequence number given in the SYN or SYN-ACK it's responding to. In passt we were tracking that by advancing conn->seq_to_tap by one when we send a SYN or SYN-ACK (in tcp_send_flag()). However, we also initialized conn->seq_ack_from_tap, representing the acks we've already seen from the tap side, to ISN+1, meaning we treated it has having acknowledged the SYN before it actually did. There were apparently reasons for this in earlier versions, but it causes problems now. Because of this when we actually did receive the initial ACK or SYN-ACK, we wouldn't see the acknoweldged serial number as advancing, and so wouldn't clear the ACK_FROM_TAP_DUE flag. In most cases we'd get away because subsequent packets would clear the flag. However if one (or both) sides didn't send any data, the other side would (correctly) keep sending ISN+1 as the acknowledged sequence number, meaning we would never clear the ACK_FROM_TAP_DUE flag. That would mean we'd treat the connection as if we needed to retransmit (although we had 0 bytes to retransmit), and eventaully (after around 30s) reset the connection due to too many retransmits. Specifically this could cause the iperf3 throughput tests in the testsuite to fail if set for a long enough test period. Correct this by initializing conn->seq_ack_from_tap to the ISN and only advancing it when we actually get the first ACK (or SYN-ACK). Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-27 14:56:34 +11:00
conn->seq_ack_from_tap = conn->seq_to_tap;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
conn->wnd_from_tap = WINDOW_DEFAULT;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp_send_flag(c, conn, SYN);
conn_flag(c, conn, ACK_FROM_TAP_DUE);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
tcp_get_sndbuf(conn);
FLOW_ACTIVATE(conn);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
/**
* tcp_listen_handler() - Handle new connection request from listening socket
* @c: Execution context
* @ref: epoll reference of listening socket
* @now: Current timestamp
*/
void tcp_listen_handler(const struct ctx *c, union epoll_ref ref,
const struct timespec *now)
{
const struct flowside *ini;
union sockaddr_inany sa;
socklen_t sl = sizeof(sa);
union flow *flow;
int s;
ASSERT(!c->no_tcp);
if (!(flow = flow_alloc()))
return;
s = accept4(ref.fd, &sa.sa, &sl, SOCK_NONBLOCK);
if (s < 0)
goto cancel;
/* FIXME: When listening port has a specific bound address, record that
* as our address
*/
ini = flow_initiate_sa(flow, ref.tcp_listen.pif, &sa,
ref.tcp_listen.port);
if (!inany_is_unicast(&ini->eaddr) || ini->eport == 0) {
char sastr[SOCKADDR_STRLEN];
err("Invalid endpoint from TCP accept(): %s",
sockaddr_ntop(&sa, sastr, sizeof(sastr)));
goto cancel;
}
if (!flow_target(c, flow, IPPROTO_TCP))
goto cancel;
switch (flow->f.pif[TGTSIDE]) {
case PIF_SPLICE:
case PIF_HOST:
tcp_splice_conn_from_sock(c, flow, s);
break;
case PIF_TAP:
tcp_tap_conn_from_sock(c, flow, s, now);
break;
default:
flow_err(flow, "No support for forwarding TCP from %s to %s",
pif_name(flow->f.pif[INISIDE]),
pif_name(flow->f.pif[TGTSIDE]));
goto cancel;
}
return;
cancel:
flow_alloc_cancel(flow);
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_timer_handler() - timerfd events: close, send ACK, retransmit, or reset
* @c: Execution context
* @ref: epoll reference of timer (not connection)
*
* #syscalls timerfd_gettime arm:timerfd_gettime64 i686:timerfd_gettime64
*/
void tcp_timer_handler(const struct ctx *c, union epoll_ref ref)
{
struct itimerspec check_armed = { { 0 }, { 0 } };
struct tcp_tap_conn *conn = &FLOW(ref.flow)->tcp;
ASSERT(!c->no_tcp);
ASSERT(conn->f.type == FLOW_TCP);
/* We don't reset timers on ~ACK_FROM_TAP_DUE, ~ACK_TO_TAP_DUE. If the
* timer is currently armed, this event came from a previous setting,
* and we just set the timer to a new point in the future: discard it.
*/
if (timerfd_gettime(conn->timer, &check_armed))
flow_err(conn, "failed to read timer: %s", strerror_(errno));
if (check_armed.it_value.tv_sec || check_armed.it_value.tv_nsec)
return;
if (conn->flags & ACK_TO_TAP_DUE) {
tcp_send_flag(c, conn, ACK_IF_NEEDED);
tcp: Don't reset ACK_TO_TAP_DUE on any ACK, reschedule timer as needed This is mostly symmetric with commit cc6d8286d104 ("tcp: Reset ACK_FROM_TAP_DUE flag only as needed, update timer"): we shouldn't reset the ACK_TO_TAP_DUE flag on any inbound ACK segment, but only once we acknowledge everything we received from the guest or the container. If we don't, a client might unnecessarily hold off further data, especially during slow start, and in general we won't converge to the usable bandwidth. This is very visible especially with traffic tests on links with non-negligible latency, such as in the reported issue. There, a public iperf3 server sometimes aborts the test due do what appears to be a low iperf3's --rcv-timeout (probably less than a second). Even if this doesn't happen, the throughput will converge to a fraction of the usable bandwidth. Clear ACK_TO_TAP_DUE if we acknowledged everything, set it if we didn't, and reschedule the timer in case the flag is still set as the timer expires. While at it, decrease the ACK timer interval to 10ms. A 50ms interval is short enough for any bandwidth-delay product I had in mind (local connections, or non-local connections with limited bandwidth), but here I am, testing 1gbps transfers to a peer with 100ms RTT. Indeed, we could eventually make the timer interval dependent on the current window and estimated bandwidth-delay product, but at least for the moment being, 10ms should be long enough to avoid any measurable syscall overhead, yet usable for any real-world application. Reported-by: Lukas Mrtvy <lukas.mrtvy@gmail.com> Link: https://bugs.passt.top/show_bug.cgi?id=44 Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2023-03-21 23:14:58 +01:00
tcp_timer_ctl(c, conn);
} else if (conn->flags & ACK_FROM_TAP_DUE) {
if (!(conn->events & ESTABLISHED)) {
flow_dbg(conn, "handshake timeout");
tcp_rst(c, conn);
} else if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED)) {
flow_dbg(conn, "FIN timeout");
tcp_rst(c, conn);
} else if (conn->retrans == TCP_MAX_RETRANS) {
flow_dbg(conn, "retransmissions count exceeded");
tcp_rst(c, conn);
} else {
flow_dbg(conn, "ACK timeout, retry");
conn->retrans++;
conn->seq_to_tap = conn->seq_ack_from_tap;
if (tcp_set_peek_offset(conn->sock, 0)) {
tcp_rst(c, conn);
} else {
tcp_data_from_sock(c, conn);
tcp_timer_ctl(c, conn);
}
}
} else {
struct itimerspec new = { { 0 }, { ACT_TIMEOUT, 0 } };
struct itimerspec old = { { 0 }, { 0 } };
/* Activity timeout: if it was already set, reset the
* connection, otherwise, it was a left-over from ACK_TO_TAP_DUE
* or ACK_FROM_TAP_DUE, so just set the long timeout in that
* case. This avoids having to preemptively reset the timer on
* ~ACK_TO_TAP_DUE or ~ACK_FROM_TAP_DUE.
*/
if (timerfd_settime(conn->timer, 0, &new, &old))
flow_err(conn, "failed to set timer: %s",
strerror_(errno));
if (old.it_value.tv_sec == ACT_TIMEOUT) {
flow_dbg(conn, "activity timeout");
tcp_rst(c, conn);
}
}
}
/**
* tcp_sock_handler() - Handle new data from non-spliced socket
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @c: Execution context
* @ref: epoll reference
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @events: epoll events bitmap
*/
void tcp_sock_handler(const struct ctx *c, union epoll_ref ref,
uint32_t events)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
struct tcp_tap_conn *conn = conn_at_sidx(ref.flowside);
ASSERT(!c->no_tcp);
ASSERT(pif_at_sidx(ref.flowside) != PIF_TAP);
if (conn->events == CLOSED)
return;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
if (events & EPOLLERR) {
tcp_rst(c, conn);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
return;
}
if ((conn->events & TAP_FIN_SENT) && (events & EPOLLHUP)) {
conn_event(c, conn, CLOSED);
return;
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}
if (conn->events & ESTABLISHED) {
if (CONN_HAS(conn, SOCK_FIN_SENT | TAP_FIN_ACKED))
conn_event(c, conn, CLOSED);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (events & (EPOLLRDHUP | EPOLLHUP))
conn_event(c, conn, SOCK_FIN_RCVD);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (events & EPOLLIN)
tcp_data_from_sock(c, conn);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
tcp: Fix ACK sequence getting out of sync on EPOLLOUT wake-up In the next patches, I'm extending the usage of STALLED to a few more cases. Doing so revealed this issue: if we set STALLED and, consequently, EPOLLOUT (which is wrong, fixed later) right after we set a connection to ESTABLISHED (which also happened by mistake while I was preparing another change), with the guest sending data together with the final ACK in the handshake, say: 41.3661: vhost-user: got kick_data: 0000000000000001 idx: 1 41.3662: Flow 2 (NEW): FREE -> NEW 41.3663: Flow 2 (INI): NEW -> INI 41.3663: Flow 2 (INI): TAP [2a01:4f8:222:904::2]:52536 -> [2001:db8:9a55::1]:10003 => ? 41.3665: Flow 2 (TGT): INI -> TGT 41.3666: Flow 2 (TGT): TAP [2a01:4f8:222:904::2]:52536 -> [2001:db8:9a55::1]:10003 => HOST [::]:0 -> [2001:db8:9a55::1]:10003 41.3667: Flow 2 (TCP connection): TGT -> TYPED 41.3667: Flow 2 (TCP connection): TAP [2a01:4f8:222:904::2]:52536 -> [2001:db8:9a55::1]:10003 => HOST [::]:0 -> [2001:db8:9a55::1]:10003 41.3669: Flow 2 (TCP connection): TAP_SYN_RCVD: CLOSED -> SYN_SENT 41.3670: Flow 2 (TCP connection): Side 0 hash table insert: bucket: 339814 41.3672: Flow 2 (TCP connection): TYPED -> ACTIVE 41.3673: Flow 2 (TCP connection): TAP [2a01:4f8:222:904::2]:52536 -> [2001:db8:9a55::1]:10003 => HOST [::]:0 -> [2001:db8:9a55::1]:10003 41.3674: Flow 2 (TCP connection): TAP_SYN_ACK_SENT: SYN_SENT -> SYN_RCVD 41.3675: Flow 2 (TCP connection): ACK_FROM_TAP_DUE 41.3675: Flow 2 (TCP connection): timer expires in 10.000s 41.3675: vhost-user: got kick_data: 0000000000000001 idx: 1 41.3676: Flow 2 (TCP connection): ACK_FROM_TAP_DUE dropped 41.3676: Flow 2 (TCP connection): ESTABLISHED: SYN_RCVD -> ESTABLISHED 41.3678: Flow 2 (TCP connection): STALLED 41.3678: vhost-user: got kick_data: 0000000000000002 idx: 1 41.3679: Flow 2 (TCP connection): ACK_TO_TAP_DUE 41.3680: Flow 2 (TCP connection): timer expires in 0.010s 41.3680: Flow 2 (TCP connection): STALLED dropped we'll immediately get an EPOLLOUT event, call tcp_update_seqack_wnd(), but ignore window and ACK sequence update. At this point, we think we acknowledged all the data to the guest (but we didn't) and we'll happily proceed to clear the ACK_TO_TAP_DUE flag: 41.3780: Flow 2 (TCP connection): ACK_TO_TAP_DUE dropped 41.3780: Flow 2 (TCP connection): timer expires in 7200.000s 41.5754: vhost-user: got kick_data: 0000000000000001 idx: 1 41.9956: vhost-user: got kick_data: 0000000000000001 idx: 1 42.8275: vhost-user: got kick_data: 0000000000000001 idx: 1 while the guest starts retransmitting that data desperately, without ever getting an ACK segment from us: 1433 38.746353 2a01:4f8:222:904::2 → 2001:db8:9a55::1 94 TCP 54312 → 10003 [SYN] Seq=0 Win=65460 Len=0 MSS=65460 SACK_PERM TSval=1089126192 TSecr=0 WS=128 1434 38.747357 2001:db8:9a55::1 → 2a01:4f8:222:904::2 82 TCP 10003 → 54312 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=61440 WS=256 1435 38.747500 2a01:4f8:222:904::2 → 2001:db8:9a55::1 74 TCP 54312 → 10003 [ACK] Seq=1 Ack=1 Win=65536 Len=0 1436 38.747769 2a01:4f8:222:904::2 → 2001:db8:9a55::1 8266 TCP 54312 → 10003 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=8192 1437 38.747798 2a01:4f8:222:904::2 → 2001:db8:9a55::1 32841 TCP 54312 → 10003 [ACK] Seq=8193 Ack=1 Win=65536 Len=32767 1438 38.748049 2001:db8:9a55::1 → 2a01:4f8:222:904::2 74 TCP [TCP Window Update] 10003 → 54312 [ACK] Seq=1 Ack=1 Win=65280 Len=0 1439 38.954044 2a01:4f8:222:904::2 → 2001:db8:9a55::1 8266 TCP [TCP Retransmission] 54312 → 10003 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=8192 1440 39.370096 2a01:4f8:222:904::2 → 2001:db8:9a55::1 8266 TCP [TCP Retransmission] 54312 → 10003 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=8192 1441 40.202135 2a01:4f8:222:904::2 → 2001:db8:9a55::1 8266 TCP [TCP Retransmission] 54312 → 10003 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=8192 because seq_ack_to_tap is already set to the sequence after frame number 1437 in the example. For some reason, I could only reproduce this with vhost-user, IPv6, and passt running under valgrind while taking captures. Even under these conditions, it happens quite rarely. Forcibly send an ACK segment if we update the ACK sequence (or the advertised window). Fixes: e5eefe77435a ("tcp: Refactor to use events instead of states, split out spliced implementation") Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2025-01-16 20:06:59 +01:00
if (events & EPOLLOUT) {
if (tcp_update_seqack_wnd(c, conn, false, NULL))
tcp_send_flag(c, conn, ACK);
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return;
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
/* EPOLLHUP during handshake: reset */
if (events & EPOLLHUP) {
tcp_rst(c, conn);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return;
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/* Data during handshake tap-side: check later */
if (conn->events & SOCK_ACCEPTED)
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
return;
if (conn->events == TAP_SYN_RCVD) {
if (events & EPOLLOUT)
tcp_connect_finish(c, conn);
/* Data? Check later */
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
/**
* tcp_sock_init_one() - Initialise listening socket for address and port
* @c: Execution context
* @addr: Pointer to address for binding, NULL for dual stack any
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: fd for the new listening socket, negative error code on failure
*/
static int tcp_sock_init_one(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_HOST,
};
int s;
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_HOST, addr,
ifname, port, tref.u32);
if (c->tcp.fwd_in.mode == FWD_AUTO) {
if (!addr || inany_v4(addr))
tcp_sock_init_ext[port][V4] = s < 0 ? -1 : s;
if (!addr || !inany_v4(addr))
tcp_sock_init_ext[port][V6] = s < 0 ? -1 : s;
}
if (s < 0)
return s;
tcp_sock_set_bufsize(c, s);
return s;
}
/**
* tcp_sock_init() - Create listening sockets for a given host ("inbound") port
* @c: Execution context
* @addr: Pointer to address for binding, NULL if not configured
* @ifname: Name of interface to bind to, NULL if not configured
* @port: Port, host order
*
* Return: 0 on (partial) success, negative error code on (complete) failure
*/
int tcp_sock_init(const struct ctx *c, const union inany_addr *addr,
const char *ifname, in_port_t port)
{
int r4 = FD_REF_MAX + 1, r6 = FD_REF_MAX + 1;
ASSERT(!c->no_tcp);
if (!addr && c->ifi4 && c->ifi6)
/* Attempt to get a dual stack socket */
if (tcp_sock_init_one(c, NULL, ifname, port) >= 0)
return 0;
/* Otherwise create a socket per IP version */
if ((!addr || inany_v4(addr)) && c->ifi4)
r4 = tcp_sock_init_one(c, addr ? addr : &inany_any4,
ifname, port);
if ((!addr || !inany_v4(addr)) && c->ifi6)
r6 = tcp_sock_init_one(c, addr ? addr : &inany_any6,
ifname, port);
if (IN_INTERVAL(0, FD_REF_MAX, r4) || IN_INTERVAL(0, FD_REF_MAX, r6))
return 0;
return r4 < 0 ? r4 : r6;
}
/**
* tcp_ns_sock_init4() - Init socket to listen for outbound IPv4 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init4(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback4,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V4] = s;
}
/**
* tcp_ns_sock_init6() - Init socket to listen for outbound IPv6 connections
* @c: Execution context
* @port: Port, host order
*/
static void tcp_ns_sock_init6(const struct ctx *c, in_port_t port)
{
union tcp_listen_epoll_ref tref = {
.port = port,
.pif = PIF_SPLICE,
};
int s;
ASSERT(c->mode == MODE_PASTA);
s = pif_sock_l4(c, EPOLL_TYPE_TCP_LISTEN, PIF_SPLICE, &inany_loopback6,
NULL, port, tref.u32);
if (s >= 0)
tcp_sock_set_bufsize(c, s);
else
s = -1;
if (c->tcp.fwd_out.mode == FWD_AUTO)
tcp_sock_ns[port][V6] = s;
}
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
/**
* tcp_ns_sock_init() - Init socket to listen for spliced outbound connections
* @c: Execution context
* @port: Port, host order
*/
void tcp_ns_sock_init(const struct ctx *c, in_port_t port)
{
ASSERT(!c->no_tcp);
if (c->ifi4)
tcp_ns_sock_init4(c, port);
if (c->ifi6)
tcp_ns_sock_init6(c, port);
}
/**
* tcp_ns_socks_init() - Bind sockets in namespace for outbound connections
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
* @arg: Execution context
*
passt, pasta: Namespace-based sandboxing, defer seccomp policy application To reach (at least) a conceptually equivalent security level as implemented by --enable-sandbox in slirp4netns, we need to create a new mount namespace and pivot_root() into a new (empty) mountpoint, so that passt and pasta can't access any filesystem resource after initialisation. While at it, also detach IPC, PID (only for passt, to prevent vulnerabilities based on the knowledge of a target PID), and UTS namespaces. With this approach, if we apply the seccomp filters right after the configuration step, the number of allowed syscalls grows further. To prevent this, defer the application of seccomp policies after the initialisation phase, before the main loop, that's where we expect bad things to happen, potentially. This way, we get back to 22 allowed syscalls for passt and 34 for pasta, on x86_64. While at it, move #syscalls notes to specific code paths wherever it conceptually makes sense. We have to open all the file handles we'll ever need before sandboxing: - the packet capture file can only be opened once, drop instance numbers from the default path and use the (pre-sandbox) PID instead - /proc/net/tcp{,v6} and /proc/net/udp{,v6}, for automatic detection of bound ports in pasta mode, are now opened only once, before sandboxing, and their handles are stored in the execution context - the UNIX domain socket for passt is also bound only once, before sandboxing: to reject clients after the first one, instead of closing the listening socket, keep it open, accept and immediately discard new connection if we already have a valid one Clarify the (unchanged) behaviour for --netns-only in the man page. To actually make passt and pasta processes run in a separate PID namespace, we need to unshare(CLONE_NEWPID) before forking to background (if configured to do so). Introduce a small daemon() implementation, __daemon(), that additionally saves the PID file before forking. While running in foreground, the process itself can't move to a new PID namespace (a process can't change the notion of its own PID): mention that in the man page. For some reason, fork() in a detached PID namespace causes SIGTERM and SIGQUIT to be ignored, even if the handler is still reported as SIG_DFL: add a signal handler that just exits. We can now drop most of the pasta_child_handler() implementation, that took care of terminating all processes running in the same namespace, if pasta started a shell: the shell itself is now the init process in that namespace, and all children will terminate once the init process exits. Issuing 'echo $$' in a detached PID namespace won't return the actual namespace PID as seen from the init namespace: adapt demo and test setup scripts to reflect that. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2022-02-07 21:11:37 +01:00
* Return: 0
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
*/
/* cppcheck-suppress [constParameterCallback, unmatchedSuppression] */
static int tcp_ns_socks_init(void *arg)
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
{
const struct ctx *c = (const struct ctx *)arg;
unsigned port;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
ns_enter(c);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(c->tcp.fwd_out.map, port))
continue;
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
tcp_ns_sock_init(c, port);
passt: Add PASTA mode, major rework PASTA (Pack A Subtle Tap Abstraction) provides quasi-native host connectivity to an otherwise disconnected, unprivileged network and user namespace, similarly to slirp4netns. Given that the implementation is largely overlapping with PASST, no separate binary is built: 'pasta' (and 'passt4netns' for clarity) both link to 'passt', and the mode of operation is selected depending on how the binary is invoked. Usage example: $ unshare -rUn # echo $$ 1871759 $ ./pasta 1871759 # From another terminal # udhcpc -i pasta0 2>/dev/null # ping -c1 pasta.pizza PING pasta.pizza (64.190.62.111) 56(84) bytes of data. 64 bytes from 64.190.62.111 (64.190.62.111): icmp_seq=1 ttl=255 time=34.6 ms --- pasta.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 34.575/34.575/34.575/0.000 ms # ping -c1 spaghetti.pizza PING spaghetti.pizza(2606:4700:3034::6815:147a (2606:4700:3034::6815:147a)) 56 data bytes 64 bytes from 2606:4700:3034::6815:147a (2606:4700:3034::6815:147a): icmp_seq=1 ttl=255 time=29.0 ms --- spaghetti.pizza ping statistics --- 1 packets transmitted, 1 received, 0% packet loss, time 0ms rtt min/avg/max/mdev = 28.967/28.967/28.967/0.000 ms This entails a major rework, especially with regard to the storage of tracked connections and to the semantics of epoll(7) references. Indexing TCP and UDP bindings merely by socket proved to be inflexible and unsuitable to handle different connection flows: pasta also provides Layer-2 to Layer-2 socket mapping between init and a separate namespace for local connections, using a pair of splice() system calls for TCP, and a recvmmsg()/sendmmsg() pair for UDP local bindings. For instance, building on the previous example: # ip link set dev lo up # iperf3 -s $ iperf3 -c ::1 -Z -w 32M -l 1024k -P2 | tail -n4 [SUM] 0.00-10.00 sec 52.3 GBytes 44.9 Gbits/sec 283 sender [SUM] 0.00-10.43 sec 52.3 GBytes 43.1 Gbits/sec receiver iperf Done. epoll(7) references now include a generic part in order to demultiplex data to the relevant protocol handler, using 24 bits for the socket number, and an opaque portion reserved for usage by the single protocol handlers, in order to track sockets back to corresponding connections and bindings. A number of fixes pertaining to TCP state machine and congestion window handling are also included here. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-07-17 08:34:53 +02:00
}
return 0;
}
/**
* tcp_sock_refill_pool() - Refill one pool of pre-opened sockets
* @c: Execution context
* @pool: Pool of sockets to refill
* @af: Address family to use
*
* Return: 0 on success, negative error code if there was at least one error
*/
int tcp_sock_refill_pool(const struct ctx *c, int pool[], sa_family_t af)
{
int i;
for (i = 0; i < TCP_SOCK_POOL_SIZE; i++) {
int fd;
if (pool[i] >= 0)
continue;
if ((fd = tcp_conn_new_sock(c, af)) < 0)
return fd;
pool[i] = fd;
}
return 0;
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/**
* tcp_sock_refill_init() - Refill pools of pre-opened sockets in init ns
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
* @c: Execution context
*/
static void tcp_sock_refill_init(const struct ctx *c)
{
if (c->ifi4) {
int rc = tcp_sock_refill_pool(c, init_sock_pool4, AF_INET);
if (rc < 0)
warn("TCP: Error refilling IPv4 host socket pool: %s",
strerror_(-rc));
}
if (c->ifi6) {
int rc = tcp_sock_refill_pool(c, init_sock_pool6, AF_INET6);
if (rc < 0)
warn("TCP: Error refilling IPv6 host socket pool: %s",
strerror_(-rc));
}
}
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
/**
* tcp_probe_peek_offset_cap() - Check if SO_PEEK_OFF is supported by kernel
* @af: Address family, IPv4 or IPv6
*
* Return: true if supported, false otherwise
*/
static bool tcp_probe_peek_offset_cap(sa_family_t af)
{
bool ret = false;
int s, optv = 0;
s = socket(af, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
} else {
if (!setsockopt(s, SOL_SOCKET, SO_PEEK_OFF, &optv, sizeof(int)))
ret = true;
close(s);
}
return ret;
}
/**
* tcp_probe_tcp_info() - Check what data TCP_INFO reports
*
* Return: Number of bytes returned by TCP_INFO getsockopt()
*/
static socklen_t tcp_probe_tcp_info(void)
{
tcp: Remove compile-time dependency on struct tcp_info version In the Makefile we probe to create several defines based on the presence of particular fields in struct tcp_info. These defines are used for two purposes, neither of which they accomplish well: 1) Determining if the tcp_info fields are available at runtime. For this purpose the defines are Just Plain Wrong, since the runtime kernel may not be the same as the compile time kernel. We corrected this for tcp_snd_wnd, but not for tcpi_bytes_acked or tcpi_min_rtt 2) Allowing the source to compile against older kernel headers which don't have the fields in question. This works in theory, but it does mean we won't be able to use the fields, even if later run against a newer kernel. Furthermore, it's quite fragile: without much more thorough tests of builds in different environments that we're currently set up for, it's very easy to miss cases where we're accessing a field without protection from an #ifdef. For example we currently access tcpi_snd_wnd without #ifdefs in tcp_update_seqack_wnd(). Improve this with a different approach, borrowed from qemu (which has many instances of similar problems). Don't compile against linux/tcp.h, using netinet/tcp.h instead. Then for when we need an extension field, define a struct tcp_info_linux, copied from the kernel, with all the fields we're interested in. That may need updating from future kernel versions, but only when we want to use a new extension, so it shouldn't be frequent. This allows us to remove the HAS_SND_WND define entirely. We keep HAS_BYTES_ACKED and HAS_MIN_RTT now, since they're used for purpose (1), we'll fix that in a later patch. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> [sbrivio: Trivial grammar fixes in comments] Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2024-10-24 15:59:20 +11:00
struct tcp_info_linux tinfo;
socklen_t sl = sizeof(tinfo);
int s;
s = socket(AF_INET, SOCK_STREAM | SOCK_CLOEXEC, IPPROTO_TCP);
if (s < 0) {
warn_perror("Temporary TCP socket creation failed");
return false;
}
if (getsockopt(s, SOL_TCP, TCP_INFO, &tinfo, &sl)) {
warn_perror("Failed to get TCP_INFO on temporary socket");
close(s);
return false;
}
close(s);
return sl;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_init() - Get initial sequence, hash secret, initialise per-socket data
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @c: Execution context
*
* Return: 0, doesn't return on failure
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
int tcp_init(struct ctx *c)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
ASSERT(!c->no_tcp);
tcp_sock_iov_init(c);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
memset(init_sock_pool4, 0xff, sizeof(init_sock_pool4));
memset(init_sock_pool6, 0xff, sizeof(init_sock_pool6));
memset(tcp_sock_init_ext, 0xff, sizeof(tcp_sock_init_ext));
memset(tcp_sock_ns, 0xff, sizeof(tcp_sock_ns));
tcp_sock_refill_init(c);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
if (c->mode == MODE_PASTA) {
tcp_splice_init(c);
NS_CALL(tcp_ns_socks_init, c);
tcp: Rework window handling, timers, add SO_RCVLOWAT and pools for sockets/pipes This introduces a number of fundamental changes that would be quite messy to split. Summary: - advertised window scaling can be as big as we want, we just need to clamp window sizes to avoid exceeding the size of our "discard" buffer for unacknowledged data from socket - add macros to compare sequence numbers - force sending ACK to guest/tap on PSH segments, always in pasta mode, whenever we see an overlapping segment, or when we reach a given threshold compared to our window - we don't actually use recvmmsg() here, fix comments and label - introduce pools for pre-opened sockets and pipes, to decrease latency on new connections - set receiving and sending buffer sizes to the maximum allowed, kernel will clamp and round appropriately - defer clean-up of spliced and non-spliced connection to timer - in tcp_send_to_tap(), there's no need anymore to keep a large buffer, shrink it down to what we actually need - introduce SO_RCVLOWAT setting and activity tracking for spliced connections, to coalesce data moved by splice() calls as much as possible - as we now have a compacted connection table, there's no need to keep sparse bitmaps tracking connection activity -- simply go through active connections with a loop in the timer handler - always clamp the advertised window to half our sending buffer, too, to minimise retransmissions from the guest/tap - set TCP_QUICKACK for originating socket in spliced connections, there's no need to delay them - fix up timeout for unacknowledged data from socket Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-09-19 02:29:05 +02:00
}
peek_offset_cap = (!c->ifi4 || tcp_probe_peek_offset_cap(AF_INET)) &&
(!c->ifi6 || tcp_probe_peek_offset_cap(AF_INET6));
debug("SO_PEEK_OFF%ssupported", peek_offset_cap ? " " : " not ");
tcp_info_size = tcp_probe_tcp_info();
#define dbg_tcpi(f_) debug("TCP_INFO tcpi_%s field%s supported", \
STRINGIFY(f_), tcp_info_cap(f_) ? " " : " not ")
dbg_tcpi(snd_wnd);
dbg_tcpi(bytes_acked);
dbg_tcpi(min_rtt);
#undef dbg_tcpi
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
return 0;
}
/**
* tcp_port_rebind() - Rebind ports to match forward maps
* @c: Execution context
* @outbound: True to remap outbound forwards, otherwise inbound
*
* Must be called in namespace context if @outbound is true.
*/
static void tcp_port_rebind(struct ctx *c, bool outbound)
{
const uint8_t *fmap = outbound ? c->tcp.fwd_out.map : c->tcp.fwd_in.map;
const uint8_t *rmap = outbound ? c->tcp.fwd_in.map : c->tcp.fwd_out.map;
int (*socks)[IP_VERSIONS] = outbound ? tcp_sock_ns : tcp_sock_init_ext;
unsigned port;
for (port = 0; port < NUM_PORTS; port++) {
if (!bitmap_isset(fmap, port)) {
if (socks[port][V4] >= 0) {
close(socks[port][V4]);
socks[port][V4] = -1;
}
if (socks[port][V6] >= 0) {
close(socks[port][V6]);
socks[port][V6] = -1;
}
continue;
}
/* Don't loop back our own ports */
if (bitmap_isset(rmap, port))
continue;
if ((c->ifi4 && socks[port][V4] == -1) ||
(c->ifi6 && socks[port][V6] == -1)) {
if (outbound)
tcp_ns_sock_init(c, port);
else
tcp_sock_init(c, NULL, NULL, port);
}
}
}
/**
* tcp_port_rebind_outbound() - Rebind ports in namespace
* @arg: Execution context
*
* Called with NS_CALL()
*
* Return: 0
*/
static int tcp_port_rebind_outbound(void *arg)
{
struct ctx *c = (struct ctx *)arg;
ns_enter(c);
tcp_port_rebind(c, true);
return 0;
}
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
/**
* tcp_timer() - Periodic tasks: port detection, closed connections, pool refill
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
* @c: Execution context
* @now: Current timestamp
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
*/
void tcp_timer(struct ctx *c, const struct timespec *now)
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
{
(void)now;
if (c->mode == MODE_PASTA) {
if (c->tcp.fwd_out.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_out, &c->tcp.fwd_in);
NS_CALL(tcp_port_rebind_outbound, c);
}
if (c->tcp.fwd_in.mode == FWD_AUTO) {
fwd_scan_ports_tcp(&c->tcp.fwd_in, &c->tcp.fwd_out);
tcp_port_rebind(c, false);
}
}
tcp_sock_refill_init(c);
if (c->mode == MODE_PASTA)
tcp_splice_refill(c);
passt: New design and implementation with native Layer 4 sockets This is a reimplementation, partially building on the earlier draft, that uses L4 sockets (SOCK_DGRAM, SOCK_STREAM) instead of SOCK_RAW, providing L4-L2 translation functionality without requiring any security capability. Conceptually, this follows the design presented at: https://gitlab.com/abologna/kubevirt-and-kvm/-/blob/master/Networking.md The most significant novelty here comes from TCP and UDP translation layers. In particular, the TCP state and translation logic follows the intent of being minimalistic, without reimplementing a full TCP stack in either direction, and synchronising as much as possible the TCP dynamic and flows between guest and host kernel. Another important introduction concerns addressing, port translation and forwarding. The Layer 4 implementations now attempt to bind on all unbound ports, in order to forward connections in a transparent way. While at it: - the qemu 'tap' back-end can't be used as-is by qrap anymore, because of explicit checks now introduced in qemu to ensure that the corresponding file descriptor is actually a tap device. For this reason, qrap now operates on a 'socket' back-end type, accounting for and building the additional header reporting frame length - provide a demo script that sets up namespaces, addresses and routes, and starts the daemon. A virtual machine started in the network namespace, wrapped by qrap, will now directly interface with passt and communicate using Layer 4 sockets provided by the host kernel. Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
2021-02-16 07:25:09 +01:00
}