According to Intel's mnemonic (which is used by iced-x86) the first
argument is destination while the second is source.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
If the function can never return an error this is now a clippy failure:
error: this function's return value is unnecessarily wrapped by `Result`
--> virtio-devices/src/watchdog.rs:215:5
|
215 | / fn set_state(&mut self, state: &WatchdogState) -> io::Result<()> {
216 | | self.common.avail_features = state.avail_features;
217 | | self.common.acked_features = state.acked_features;
218 | | // When restoring enable the watchdog if it was previously enabled. We reset the timer
... |
223 | | Ok(())
224 | | }
| |_____^
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#unnecessary_wraps
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
MOV R/RM is a special case of MOVZX, so we generalize the mov_r_rm macro
to make it support both instructions.
Fixes: #2227
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
And fix related warnings: op_kind and op_register are being deprecated
as they might panic.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Currently these two macros(msr, msr_data) reside both on kvm and mshv
module. Definition is same for both module. Moving them to arch/x86
module eliminates redundancy and makes more sense.
Signed-off-by: Muminul Islam <muislam@microsoft.com>
The customized hashmap macro can't be lifted to common MockVMM code.
MockVMM only needs a collection to iterate over to get initial register
states. A vector is just as good as a hashmap.
Switch to use a vector to store initial register states. This allows us
to drop the hashmap macro everywhere.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
Unfortunately Rust stable does not yet have inline ASM support the flag
calculation will have to be implemented in software.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
There is no need to have a pair of curly brackets for structures without
any member.
No functional change.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
The mapping between code and its handler is static. We can drop the
HashMap in favour of a static match expression.
This has two benefits:
1. No more memory allocation and deallocation for the HashMap.
2. Shorter look-up time.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
When the x86 instruction decoder tells us about some missing bytes from
the instruction stream, we call into the platform fetch method and
emulate one last instruction.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In preparation for the instruction fetching step, we modify the decoding
loop so that we can check what the last decoding error is.
We also switch to explictly using decode_out() which removes a 32 bytes
copy compared to decode().
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to validate emulated memory accesses, we need to be able to get
all the segments descriptor attributes.
This is done by abstracting the SegmentRegister attributes through a
trait that each hypervisor will have to implement.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We need to be able to build the CPU mode from its state in order to
start implementing mode related checks in the x86 emulator.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The MockVMM platform will be used by other instructions emulation
implementations, but also by the emulator framework.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
The observation here is PlatformEmulator can be seen as the context for
emulation to take place. It should be rather easy to construct a context
that satisfies the lifetime constraints for instruction emulation.
The thread doing the emulation will have full ownership over the
context, so this removes the need to wrap PlatformEmulator in Arc and
Mutex, as well as the need for the context to be either Clone or Copy.
Signed-off-by: Wei Liu <liuwe@microsoft.com>
The emulator gets a CPU state from a CpuStateManager instance, emulates
the passed instructions stream and returns the modified CPU state.
The emulator is a skeleton for now since it comes with an empty
instruction mnemonic map.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
And an InstructionMap helper structure to map x86 mnemonic codes
to instruction handlers.
Any instruction emulation implementation should then boil down with
implementing InstructionHandler for any supported mnemonic.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Minimal will be defined by the amount of emulated instructions.
Carrying all GPRs, all CRs, segment registers and table registers should
cover quite a few instructions.
Co-developed-by: Wei Liu <liuwe@microsoft.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
For efficiently emulating x86 instructions, we need to build and pass a
CPU state copy/reference to instruction emulation handlers. Those handlers
will typically modify the CPU state and let the caller commit those
changes back through the PlatformEmulator trait set_cpu_state method.
Hypervisors typically have internal CPU state structures, that maps back
to the correspinding kernel APIs. By implementing the CpuState trait,
instruction emulators will be able to directly work on CPU state
instances that are directly consumable by the underlying hypervisor and
its kernel APIs.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
In order to emulate instructions, we need a way to get access to some of
the guest resources. The PlatformEmulator interface provides guest
memory and CPU state access to emulator implementations.
Typically, an hypervisor will implement PlatformEmulator for architecture
specific instruction emulators to build their framework on top of.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
We will need the GDT API for the hypervisor's x86 instruction
emulator implementation, it's better if the arch crate depends on the
hypervisor one rather than the other way around.
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
Initially the licensing was just Apache-2.0. This patch changes
the licensing to dual license Apache-2.0 OR BSD-3-Clause
Signed-off-by: Muminul Islam <muislam@microsoft.com>
Implement the vCPU state getter and setter separately from the initial
KVM Hypervisor trait implementation, mostly for readability purposes.
Signed-off-by: Muminul Islam <muislam@microsoft.com>
Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>