This fixes all typos found by the typos utility with respect to the config file.
Signed-off-by: Philipp Schuster <philipp.schuster@cyberus-technology.de>
According the std docs implementing From<..> is preferred since it
gives you Into<..> for free where the reverse isn’t true.
Signed-off-by: Ravi kumar Veeramally <ravikumar.veeramally@intel.com>
The information about the identifier related to a Snapshot is only
relevant from the BTreeMap perspective, which is why we can get rid of
the duplicated identifier in every Snapshot structure.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Now that VirtioPciDevice, VfioPciDevice and VfioUserPciDevice have all
been moved to the new restore design, there's no need to keep the old
way around, therefore the restore() implementations for MsiConfig,
MsixConfig and PciConfiguration can be removed.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The code for restoring a VirtioPciDevice has been updated, including the
dependencies VirtioPciCommonConfig, MsixConfig and PciConfiguration.
It's important to note that both PciConfiguration and MsixConfig still
have restore() implementations because Vfio and VfioUser devices still
rely on the old way for restore.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
There are PCI extended capabilities that can't be passed through the VM
as they would be unusable from a guest perspective. That's why we
introduce a way to patch what is returned to the guest when the PCI
configuration space is accessed. The list of patches is created from the
parsing of the extended capabilities in that case, and particularly
based on the presence of the SRIOV and Resizable BAR capabilities.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Steven Dake <sdake@lambdal.com>
If the BAR for the VFIO device is marked as prefetchable on the
underlying device ensure that the BAR exposed through PciConfiguration
is also marked as prefetchable.
Fixes problem where NVIDIA devices are not usable with PCI VFIO
passthrough. See related NVIDIA kernel driver bug:
https://github.com/NVIDIA/open-gpu-kernel-modules/issues/344.
Fixes: #4451
Signed-off-by: Steven Dake <sdake@lambdal.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
warning: you are deriving `PartialEq` and can implement `Eq`
--> vmm/src/serial_manager.rs:59:30
|
59 | #[derive(Debug, Clone, Copy, PartialEq)]
| ^^^^^^^^^ help: consider deriving `Eq` as well: `PartialEq, Eq`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#derive_partial_eq_without_eq
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Instead of defining some very generic resources as PioAddressRange or
MmioAddressRange for each PCI BAR, let's move to the new Resource type
PciBar in order to make things clearer. This allows the code for being
more readable, but also removes the need for hard assumptions about the
MMIO and PIO ranges. PioAddressRange and MmioAddressRange types can be
used to describe everything except PCI BARs. BARs are very special as
they can be relocated and have special information we want to carry
along with them.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
In order to make the code more consistent and easier to read, we remove
the former tuple that was used to describe a BAR, replacing it with the
existing structure PciBarConfiguration.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The code was quite unclear regarding the type of index that was being
used regarding a BAR. This is improved by differenciating register
indexes and BAR indexes more clearly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The same way we mask the writes coming from the guest to the message
control register related to MSI-X capability, let's do the same for MSI.
The point is to prevent the guest from writing to read-only bits.
The correct writable bits for MSI are only bits 0, 4, 5 and 6 of 2nd
16-bit word.
Those are:
* MSI Enable: 0
* Multiple Message Enable: 6-4
See "Table 7-39 Message Control Register for MSI" from
"NCB-PCI_Express_Base_5.0r1.0-2019-05-22.pdf".
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
I incorrectly used the MSI message control register values for the mask
not the the MSI-X control registers.
The correct writable fields for MSI-X are only bits 14 and 15 of 2nd
16-bit word.
Those are:
* Function Mask: 14
* MSI-X Enable: 15
See "Table 7-47 Message Control Register for MSI-X" from
"NCB-PCI_Express_Base_5.0r1.0-2019-05-22.pdf"
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The PCI spec specifies that only the following bits are writable:
16: MSI Enable
20,21,22: Multiple Message Enable
26: Extended Message Data Enable
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
This message only occurs sporadically and so it should be included at
info!() level. Enhance the output to also include the BAR number.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The logic wasn't quite right, as it wasn't detecting BAR reprogramming
when the upper part of the address was identical. For instance, a BAR
moved from 0x7fc0000000 to 0x7fd0000000 wasn't detected properly.
The logic has been updated and cleaned up to fix this issue, which was
observed when running Windows guests. This fixes the network hotplug
support as well.
Fixes#1797Fixes#1798
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Simplify snapshot & restore code by using generics to specify helper
functions that take / make a Serialize / Deserialize struct
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
warning: name `IORegion` contains a capitalized acronym
--> pci/src/configuration.rs:320:5
|
320 | IORegion = 0x01,
| ^^^^^^^^ help: consider making the acronym lowercase, except the initial letter (notice the capitalization): `IoRegion`
|
= help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#upper_case_acronyms
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Misspellings were identified by https://github.com/marketplace/actions/check-spelling
* Initial corrections suggested by Google Sheets
* Additional corrections by Google Chrome auto-suggest
* Some manual corrections
Signed-off-by: Josh Soref <jsoref@users.noreply.github.com>
There will be some cases where the implementation of the snapshot()
function from the Snapshottable trait will require to modify some
internal data, therefore we make this possible by updating the trait
definition with snapshot(&mut self).
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
This simplies some of the handling for PCI BARs particularly with
respect to snapshot and restore. No attempt has been made to handle the
64-bit bar handling in a different manner to that which was used before.
Fixes: #1153
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The PCI configuration from each PCI device is modified at runtime as we
can expect the guest OS to write to some PCI capability structure, or
move the BAR to a different location in the guest address space.
For all the reasons why such configuration might differ from the initial
configuration, we must store the registers values to be able to restore
them with the right values whenever a PCI device is being restored.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
When reporting the BAR size it is necessary to return a value that is
encoded such that all the bits are set that represent the mask of the
natural alignment of the field.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
Add support for specifying the PCI revision in the PCI configuration and
populate this with the value of 1 for virtio-pci devices.
The virtio-pci specification is slightly ambiguous only saying that
transitional (i.e. devices that support legacy and virtio 1.0) should
set this to 0. In practice it seems that software expects the revision
to be set to 1 for modern only devices.
Signed-off-by: Rob Bradford <robert.bradford@intel.com>
The current code was always considering 0xffffffff being written to the
register as a sign it was expecting to get the size, hence the BAR
reprogramming detection was stating this case was not a reprogramming
case.
Problem is, if the value 0xffffffff is directed at a 64bits BAR, this
might be the high or low part of a 64bits address which is meant to be
the new address of the BAR, which means we would miss the detection of
the BAR being reprogrammed here.
This commit improves the code using finer granularity checks in order to
detect this corner case correctly.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The expansion ROM BAR reprogramming was being triggered for the wrong
reason and was causing the following error to be reported:
ERROR:pci/src/bus.rs:207 -- Failed moving device BAR: failed allocating
new 32 bits MMIO range
Following the PCI specification, here is what is defined:
Device independent configuration software can determine how much address
space the device requires by writing a value of all 1's to the address
portion of the register and then reading the value back.
This means we cannot expect 0xffffffff to be written, as the address
portion corresponds to the bits 31-11. That's why whenever the size of
this special BAR is being asked for, the value being written is
0xfffff800.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The specific part of PCI BAR reprogramming that happens for a virtio PCI
device is the update of the ioeventfds addresses KVM should listen to.
This should not be triggered for every BAR reprogramming associated with
the virtio device since a virtio PCI device might have multiple BARs.
The update of the ioeventfds addresses should only happen when the BAR
related to those addresses is being moved.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on the value being written to the BAR, the implementation can
now detect if the BAR is being moved to another address. If that is the
case, it invokes move_bar() function from the DeviceRelocation trait.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
Based on the type of BAR, we can now provide the correct address related
to a BAR index provided by the caller.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The structure provided to the add_capability() function should only
contain what comes after the capability ID and the next capability
pointer, which are located on the first WORD.
Because the structure TestCap included _vndr and _next fields, they
were directly set after the first WORD, while the assertion was
expecting to find the values of len and foo fields.
Fixes#105
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The expansion ROM BAR can be considered like a 32-bit memory BAR with a
slight difference regarding the amount of reserved bits at the beginning
of its 32-bit value. Bit 0 indicates if the BAR is enabled or disabled,
while bits 1-10 are reserved. The remaining upper 21 bits hold the BAR
address.
This commit extends the pci crate in order to support expansion ROM BAR.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The check performed on the end address was wrong since the end address
was actually the address right after the end. To get the right end
address, we need to add (region size - 1) to the start address.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
The way the function write_reg() was implemented, it was not keeping
the bits supposed to be read-only whenever the guest was writing to one
of those. That's why this commit takes care of protecting those bits,
preventing them from being updated.
The tricky part is about the BARs since we also need to handle the very
specific case where the BAR is being written with all 1's. In that case
we want to return the size of the BAR instead of its address.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
A BAR can be three different types: IO, 32 bits Memory, or 64 bits
Memory. The VMM needs a way to set the right type depending on its
needs.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>
As mentioned in the PCI specification, the Function Mask from the
Message Control Register can be set to prevent a device from injecting
MSI-X messages. This supersedes the vector masking as it interacts at
the device level.
Here quoted from the specification:
For MSI and MSI-X, while a vector is masked, the function is prohibited
from sending the associated message, and the function must set the
associated Pending bit whenever the function would otherwise send the
message. When software unmasks a vector whose associated Pending bit is
set, the function must schedule sending the associated message, and
clear the Pending bit as soon as the message has been sent. Note that
clearing the MSI-X Function Mask bit may result in many messages
needing to be sent.
This commit implements the behavior described above by reorganizing
the way the PCI configuration space is being written. It is indeed
important to be able to catch a change in the Message Control
Register without having to implement it for every PciDevice
implementation. Instead, the PciConfiguration has been modified to
take care of handling any update made to this register.
Signed-off-by: Sebastien Boeuf <sebastien.boeuf@intel.com>